# Manuals/calci/BESSELY

Jump to navigation
Jump to search

**BESSELY(x,n)**

- is the value at which to evaluate the function
- is the integer which is the order of the Bessel Function
- BESSELY(), returns the Bessel Function Yn(x)

## Description

- This function gives the value of the modified Bessel function.
- Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
- Bessel's Differential Equation is defined as:

where is the arbitrary complex number.

- But in most of the cases is the non-negative real number.
- The solutions of this equation are called Bessel Functions of order .
- The Bessel function of the second kind and sometimes it is called Weber Function or the Neumann Function..
- The Bessel function of the 2nd kind of order can be expressed as:
- where is the Bessel functions of the first kind.
- This function will give the result as error when:

1. or is non numeric 2. , because is the order of the function.

## ZOS

- The syntax is to calculate BESSELY in ZOS is .
- is the value at which to evaluate the function
- is the integer which is the order of the Bessel Function

## Examples

- =BESSELY(2,3) = -1.1277837651220644
- =BESSELY(0.7,4)= -132.6340573047033
- =BESSELY(9,1) = 0.10431457495919716
- =BESSELY(2,-1) = #N/A (ORDER OF FUNCTION < 0)

## Related Videos

## See Also

## References