Difference between revisions of "Manuals/calci/GAMMADIST"

From ZCubes Wiki
Jump to navigation Jump to search
Line 38: Line 38:
 
*For e.g.,GAMMADIST(10.45,2.8,6.4,TRUE,0.9)
 
*For e.g.,GAMMADIST(10.45,2.8,6.4,TRUE,0.9)
 
GAMMADIST(10.45,2.8,6.4,FALSE,0.9)
 
GAMMADIST(10.45,2.8,6.4,FALSE,0.9)
 +
{{#ev:youtube|l_qRjj8bUdw|280|center|Gamma Distribution}}
  
 
==Examples==
 
==Examples==

Revision as of 03:52, 27 June 2014

GAMMADIST(x,alpha,beta,cumulative,accuracy)


  • is the value of the distribution.
  • and are the value of the parameters.
  • is the logical value like true or false.
  • gives accurate value of the solution.

Description

  • This function gives the value of the Gamma Distribution.
  • The Gamma Distribution can be used in a queuing models like, the amount of rainfall accumulated in a reservoir.
  • This distribution is the Continuous Probability Distribution with two parameters and .
  • In , is the value of the distribution, is called shape parameter and is the rate parameter of the distribution and is the logical value like TRUE or FALSE.
  • If is TRUE, then this function gives the Cumulative Distribution value and if is FALSE then it gives the Probability Density Function.
  • gives accurate value of the solution.
  • The gamma function is defined by :

.

  • It is for all complex numbers except the negative integers and zero.
  • The Probability Density Function of Gamma function using Shape, rate parameters is:

, for

, where is the natural number(e = 2.71828...), is the number of occurrences of an event, and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma(\alpha)} is the Gamma function.
  • The Standard Gamma Probability Density function is:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,\alpha)=\frac{x^{\alpha-1} e^{-x}}{\Gamma(\alpha)}} .

  • The Cumulative Distribution Function of Gamma is :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x;\alpha,\beta)=\frac{\gamma(\alpha,\frac{x}{\beta})}{\Gamma(\alpha)}} , or

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x;\alpha,\beta)= e^{-\frac {x}{\beta}} \sum_{i=k}^{\infty} \frac{1}{i!} (\frac{x}{\beta})^i} for any positive integer Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} .
  • When alpha is a positive integer, then the distribution is called Erlang distribution.
  • If the shape parameter Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} is held fixed, the resulting one-parameter family of distributions is a natural exponential family.
  • For a positive integer Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} , when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha =\frac{n}{2}} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta = 2} , and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle cu= TRUE} , GAMMADIST returns (1 - CHIDIST(x)) with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} degrees of freedom.
  • This function shows the result as error when
1.Any one of the argument is non numeric
2.Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x<0}
, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha \le 0}
 or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta \le 0}
.

ZOS Section

  • The syntax is to calculate GAMMADIST in ZOS is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle GAMMADIST(x,alpha,beta,cumulative,accuracy)} .
    • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} is the value of the distribution,
    • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle alpha} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle beta} are the value of the parameters
    • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle cumulative} is the logical value like true or false.
    • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle accuracy} gives accurate value of the solution.
  • For e.g.,GAMMADIST(10.45,2.8,6.4,TRUE,0.9)

GAMMADIST(10.45,2.8,6.4,FALSE,0.9)

Gamma Distribution

Examples

  1. GAMMADIST(8.15372,5,7,TRUE)=0.006867292
  2. GAMMADIST(20.78542,2,6,TRUE)=0.860283293
  3. GAMMADIST(20.78542,2,6,FALSE)=0.01806997
  4. GAMMADIST(45.6523,9,4,FALSE)=0.019724471
  5. GAMMADIST(8.15372,5,7,TRUE,0.5)= 0.00693316259
  6. GAMMADIST(8.15372,5,7,TRUE,0.9)=0.0067648564

See Also

References

Gamma Distribution