Difference between revisions of "Manuals/calci/MONOMIAL"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div style="font-size:30px">'''MONOMIAL'''</div><br/>")
 
Line 1: Line 1:
<div style="font-size:30px">'''MONOMIAL'''</div><br/>
+
<div style="font-size:30px">'''MATRIX("MONOMIAL",order)'''</div><br/>
 +
*<math>order</math> is the order of the  Monomial matrix.
 +
 
 +
==Description==
 +
*This function gives the matrix of order 3 with the property of monomial matrix.
 +
*A monomial matrix  is a square matrix  with exactly one nonzero entry in each row and exactly one nonzero entry in each column.
 +
*So here MATRIX("monomial") is showing the monomial matrix of order 3.
 +
*Also monomial matrix is also called as generalized permutation matrix.
 +
*So in Calci, users can give the argument as MATRIX("Monomial") or MATRIX(" generalized permutation").
 +
*An example of monomial or generalized permutation matrix is:
 +
<math>\begin{bmatrix}
 +
0 & 0 & 3 & 0  \\
 +
0 & -2 & 0 & 0 \\
 +
4 & 0 & 0 & 0  \\
 +
0 & 0 & 0 & 1 \\
 +
\end{bmatrix}</math>
 +
*So any monomial matrix is the product of a permutation matrix and a diagonal matrix.
 +
 
 +
==Examples==
 +
*1.MATRIX("Monomial")
 +
{| class="wikitable"
 +
|-
 +
| 0 || 0 || 3
 +
|-
 +
| 2 || 0 || 0
 +
|-
 +
| 0 || 1 || 0
 +
|}
 +
*2.MATRIX("Generalized permutation")
 +
{| class="wikitable"
 +
|-
 +
| 0 || 3 || 0
 +
|-
 +
| 3 || 0 || 0
 +
|-
 +
| 0 || 0 || 2
 +
|}
 +
3.MATRIX("generalized permutation",5,-10..-2)
 +
{| class="wikitable"
 +
|-
 +
| 0 || 0 || 0 || -10 || 0
 +
|-
 +
| 0 || -9 || 0 || 0 || 0
 +
|-
 +
| 0 || 0 || -8 || 0 || 0
 +
|-
 +
| 0 || 0 || 0 || 0 || -7
 +
|-
 +
| -6 || 0 || 0 || 0 || 0
 +
|}
 +
 
 +
 
 +
==See Also==
 +
*[[Manuals/calci/HADAMARD| HADAMARD]]
 +
*[[Manuals/calci/EXCHANGE| EXCHANGE]]
 +
*[[Manuals/calci/IDENTITY| IDENTITY]]
 +
*[[Manuals/calci/HANKEL| HANKEL]]
 +
 
 +
==References==

Revision as of 11:06, 27 April 2015

MATRIX("MONOMIAL",order)


  • is the order of the Monomial matrix.

Description

  • This function gives the matrix of order 3 with the property of monomial matrix.
  • A monomial matrix is a square matrix with exactly one nonzero entry in each row and exactly one nonzero entry in each column.
  • So here MATRIX("monomial") is showing the monomial matrix of order 3.
  • Also monomial matrix is also called as generalized permutation matrix.
  • So in Calci, users can give the argument as MATRIX("Monomial") or MATRIX(" generalized permutation").
  • An example of monomial or generalized permutation matrix is:

  • So any monomial matrix is the product of a permutation matrix and a diagonal matrix.

Examples

  • 1.MATRIX("Monomial")
0 0 3
2 0 0
0 1 0
  • 2.MATRIX("Generalized permutation")
0 3 0
3 0 0
0 0 2

3.MATRIX("generalized permutation",5,-10..-2)

0 0 0 -10 0
0 -9 0 0 0
0 0 -8 0 0
0 0 0 0 -7
-6 0 0 0 0


See Also

References