Difference between revisions of "Manuals/calci/Pascal Triangle Fun"
Jump to navigation
Jump to search
Line 5: | Line 5: | ||
=== Sierpiński triangle === | === Sierpiński triangle === | ||
− | [https://en.wikipedia.org/wiki/Sierpi%C5%84ski_triangle | + | [https://en.wikipedia.org/wiki/Sierpi%C5%84ski_triangle Sierpierski Triangle] |
<pre> | <pre> |
Revision as of 11:06, 7 August 2020
Pascal Triangle Fun
Sierpiński triangle
//with 32 m=32; pt=PASCALTRIANGLE(m).$(x=>x%2) a=pt .map( function (r,i) { var prefix= (REPEATCHAR(" ",(2*m-(2*i+1))/2).split("")); return( prefix .concat(r.join(", ,").split(",")) .concat(prefix) ) } ); (a);
Fibonacci and Pascal Triangle
FIBONNACI(100) b=PASCALTRIANGLE(100) b.map( function calcfib(r,i,d) { var fib=0; var j=0; for(var xi=i;xi>=0;xi--) { fib+=isNaN(d[xi][j])?0:d[xi][j]; j++; } return(fib) } )
Pascal Triangle and Figurate Numbers
PASCALTRIANGLE(20)
figuratenumbers=(n,r)=>(n+r-1)!C!r; a=[1..10,0..10]@figuratenumbers; a.parts(10)
Lucas, Fibonacci, Golden Ratio Relationship
FIBONACCI(50) LUCAS(50) FIBONACCI(50) .pieces(2) .map(r=>r[1]/r[0]) GOLDENRATIO() LUCAS(50) .pieces(2) .map(r=>r[1]/r[0]) ROUND((GOLDENRATIO())^(1..10)) [(1+√5)/2,(1+√5)/2] ops.on; [(1+√5d100)/2,(1-√5d100)/2]
Pretty Pascal Triangle
m=10; pt=PASCALTRIANGLE(m) pt .map( function (r,i) { var prefix= (REPEATCHAR(" ",(2*m-(2*i+1))/2).split("")); return( prefix .concat(r.join(", ,").split(",")) .concat(prefix) ) } );Now we can use:PASCALTRIANGLE(10,true)