Difference between revisions of "Kaprekars Constant"
Jump to navigation
Jump to search
Line 17: | Line 17: | ||
function kc(x) | function kc(x) | ||
{ | { | ||
− | k= | + | k=x.⁋.⪪.⋰; |
− | kp:= | + | kp:=k.⋱.⚯*1 -k.⋰.⚯; |
_y=k; | _y=k; | ||
− | var r=-1 | + | var r=-1, rt=-1,rs=[]; |
− | |||
− | |||
try | try | ||
{ | { | ||
Line 31: | Line 29: | ||
if(t==6174 && r==-1) | if(t==6174 && r==-1) | ||
{ | { | ||
− | r=i; | + | r=i;rt=t;rs.push(t); |
− | |||
− | |||
throw("EXIT") | throw("EXIT") | ||
} | } | ||
Line 40: | Line 36: | ||
rs.push(t) | rs.push(t) | ||
} | } | ||
− | _y= | + | _y=t.⁋.⪪; |
− | |||
} | } | ||
); | ); |
Revision as of 15:40, 4 September 2024
Kaprekar's constant
The number 6174 is known as Kaprekar's constant[| Kaprekar's Constant 6174] after the Indian mathematician D. R. Kaprekar. This number is renowned for the following rule:
Take any four-digit number, using at least two different digits (leading zeros are allowed). Arrange the digits in descending and then in ascending order to get two four-digit numbers, adding leading zeros if necessary. Subtract the smaller number from the bigger number. Go back to step 2 and repeat.
Video: https://www.youtube.com/watch?v=xtyNuOikdE4
z^3 Solution
1001..1010@kc; function kc(x) { k=x.⁋.⪪.⋰; kp:=k.⋱.⚯*1 -k.⋰.⚯; _y=k; var r=-1, rt=-1,rs=[]; try { (1..7)@( function(i) { var t=kp(_y) if(t==6174 && r==-1) { r=i;rt=t;rs.push(t); throw("EXIT") } else { rs.push(t) } _y=t.⁋.⪪; } ); } catch(err) { } ⊫([x,r,rt,rs]) return([x,r,_y,rs]) }
Answer:
|
|
|
|
|
|
|
|
|
|
x | kc | |||||||||||||
1001 |
| |||||||||||||
1002 |
| |||||||||||||
1003 |
| |||||||||||||
1004 |
| |||||||||||||
1005 |
| |||||||||||||
1006 |
| |||||||||||||
1007 |
| |||||||||||||
1008 |
| |||||||||||||
1009 |
| |||||||||||||
1010 |
|