Difference between revisions of "Manuals/calci/EXP"
Jump to navigation
Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...") |
|||
| Line 1: | Line 1: | ||
| − | <div | + | <div style="font-size:30px">'''EXP(x)'''</div><br/> |
| + | *where x is the number . | ||
| + | ==Description== | ||
| + | *This function gives the e raised to the power of number. | ||
| + | *In EXP(x), where x represents the exponent of e, or e^x. | ||
| + | *The approximate value of the constant e=2.718281828459045 and it is equal to e^1 or EXP(1). | ||
| + | *It is called the mathematical constant or Euler's number or Napier's constant. | ||
| + | *Also it is the base of natural logarithm.It can be calculate in the sum of infinite series: | ||
| + | *e=1+(1/1)+(1/1.2)+(1/1.2.3)+(1/1.2.3.4) +... | ||
| + | *And the inverse function of the natural logarithm function is the exponential function: | ||
| + | *f -1(x) = e^x. | ||
| − | + | ==Examples== | |
| − | + | *EXP(1)=2.718281828459045 | |
| − | - | + | *EXP(0)=1 |
| − | + | *EXP(-5)=0.0067379469990 | |
| + | *EXP(6.3)=544.5719101259 | ||
| − | + | ==See Also== | |
| + | *[[Manuals/calci/IMEXP | IMEXP ]] | ||
| + | *[[Manuals/calci/LOG | LOG ]] | ||
| + | *[[Manuals/calci/LN | LN ]] | ||
| − | + | ==References== | |
| − | + | [http://en.wikipedia.org/wiki/Absolute_value| Absolute_value] | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
Revision as of 03:59, 21 November 2013
EXP(x)
- where x is the number .
Description
- This function gives the e raised to the power of number.
- In EXP(x), where x represents the exponent of e, or e^x.
- The approximate value of the constant e=2.718281828459045 and it is equal to e^1 or EXP(1).
- It is called the mathematical constant or Euler's number or Napier's constant.
- Also it is the base of natural logarithm.It can be calculate in the sum of infinite series:
- e=1+(1/1)+(1/1.2)+(1/1.2.3)+(1/1.2.3.4) +...
- And the inverse function of the natural logarithm function is the exponential function:
- f -1(x) = e^x.
Examples
- EXP(1)=2.718281828459045
- EXP(0)=1
- EXP(-5)=0.0067379469990
- EXP(6.3)=544.5719101259