Difference between revisions of "Manuals/calci/FDIST"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''FDIST'''('''x''', '''DF1''', '''DF2''') '''Where X'''   is the value at which to evaluate the function, '''DF...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''FDIST(x,df1,df2)'''</div><br/>
 +
*<math>x</math> is the value of the function
 +
*<math>df1</math> and <math>df1</math> is degrees of freedom.
  
'''FDIST'''('''x''', '''DF1''', '''DF2''')
+
==Description==
 +
*This function gives the value of F probability distribution.
 +
*This distribution is continuous probability  distribution and it is called  Fisher-Snedecor distribution.
 +
*The F distribution is an asymmetric distribution that has a minimum value of 0, but no maximum value.
 +
*In  <math>FDIST(x,df1,df2), x </math>  is the value of the function ,<math>df1</math> is the numerator degrees of freedom and <math>df2</math> is the denominator degrees of freedom.
 +
*This distribution is the ratio of two chi-square distributions with degrees of freedom r1 and r2, respectively, where each chi-square has first been divided by its degrees of freedom.
 +
*The Probability density function of the F distribution is:
 +
<math>f(x,r1,r2)=Γ[(r1+r2)/2](r1/r2)^r1/2*(x)r1/2-1/ Γ(r1/2)Γ(r2/2)(1+r1x/r2)^(r1+r2)/2,  0<x<\infty</math> where Γ is the gamma function.
 +
*The gamma function is defined by  Gamma(t) = integral 0 to infinity  x^{t-1} e^{-x} dx. 
 +
When the value of df1 and df2 are not integers ,then it is converted in to integers.
 +
*This function will give the result as error when
 +
  1. any one of the argument is nonnumeric.
 +
  2.x is negative
 +
  3. df1 or df2<1 ,and  df1 ordf2>=10^10
  
'''Where X'''   is the value at which to evaluate the function, '''DF1''' is the numerator degrees of freedom and '''DF2 '''is the denominator degrees of freedom.
 
  
</div>
+
==Examples==
----
+
#FDIST(20.6587,7,3)=0.01526530981
<div id="1SpaceContent" class="zcontent" align="left">
+
#FDIST(70.120045,12.2,6.35)=0.000011229898
 +
#FDIST(10,1.3,1.5)=0.134947329626
 +
#FDIST(-28,4,6)=NAN
  
This function is to determine whether two data sets have different degrees of diversity.
 
  
</div>
+
==See Also==
----
+
*[[Manuals/calci/FINV  | FINV ]]
<div id="7SpaceContent" class="zcontent" align="left">
+
*[[Manuals/calci/FTEST  | FTEST ]]
  
·          Arguments should be numeric.
 
  
·          FDIST shows the error value, when x is negative and DF1&lt;1 or DF1 is less than or equal to 10^10 and DF2&lt;1 or  DF2 is grater than 10^10.
 
  
</div>
+
==References==
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
FDIST
 
 
 
</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left">
 
 
 
Lets see an example,
 
 
 
FDIST(X,DF1,DF2)
 
 
 
'''B'''
 
 
 
15.20686
 
 
 
5
 
 
 
3
 
 
 
<nowiki>=FDIST(B2,B3,B4)</nowiki>
 
 
 
</div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| class="  " | Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="                                                          " |
 
|- class="odd"
 
| class=" " | Row1
 
| class=" " | 15.20686
 
| class="sshl_f" | NaN
 
| class="sshl_f" |
 
|
 
|- class="even"
 
| class="  " | Row2
 
| class=" " | 5
 
| class="sshl_f      " |
 
| class="sshl_f    " |
 
|
 
|- class="odd"
 
| Row3
 
| class="sshl_f " | 3
 
| class="sshl_f  " |
 
|
 
|
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f  " |
 
| class=" " |
 
|
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" |
 
| class="sshl_f  " |
 
| class=" " |
 
|
 
|- class="even"
 
| class="sshl_f" | Row6
 
| class="sshl_f" |
 
| class="sshl_f  " |
 
| class=" " |
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 

Revision as of 04:23, 7 January 2014

FDIST(x,df1,df2)


  • is the value of the function
  • and is degrees of freedom.

Description

  • This function gives the value of F probability distribution.
  • This distribution is continuous probability distribution and it is called Fisher-Snedecor distribution.
  • The F distribution is an asymmetric distribution that has a minimum value of 0, but no maximum value.
  • In is the value of the function , is the numerator degrees of freedom and is the denominator degrees of freedom.
  • This distribution is the ratio of two chi-square distributions with degrees of freedom r1 and r2, respectively, where each chi-square has first been divided by its degrees of freedom.
  • The Probability density function of the F distribution is:

Failed to parse (syntax error): {\displaystyle f(x,r1,r2)=Γ[(r1+r2)/2](r1/r2)^r1/2*(x)r1/2-1/ Γ(r1/2)Γ(r2/2)(1+r1x/r2)^(r1+r2)/2, 0<x<\infty} where Γ is the gamma function.

  • The gamma function is defined by Gamma(t) = integral 0 to infinity x^{t-1} e^{-x} dx.

When the value of df1 and df2 are not integers ,then it is converted in to integers.

  • This function will give the result as error when
 1. any one of the argument is nonnumeric.
 2.x is negative
 3. df1 or df2<1 ,and  df1 ordf2>=10^10


Examples

  1. FDIST(20.6587,7,3)=0.01526530981
  2. FDIST(70.120045,12.2,6.35)=0.000011229898
  3. FDIST(10,1.3,1.5)=0.134947329626
  4. FDIST(-28,4,6)=NAN


See Also


References