Difference between revisions of "Manuals/calci/EXP"

From ZCubes Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
==Description==
 
==Description==
 
*This function gives the <math>e</math> raised to the power of number.  
 
*This function gives the <math>e</math> raised to the power of number.  
*In <math>EXP(x)</math>, where <math>x</math> represents the exponent of <math>e</math>, or <math>e^x</math>.  
+
*In <math>EXP(x)</math>, where <math>x</math> represents the exponent of <math>e</math> or <math>e^x</math>.  
 
*The approximate  value of the constant <math>e=2.718281828459045</math> and it is equal to <math>e^x</math> or <math>EXP(1)</math>.
 
*The approximate  value of the constant <math>e=2.718281828459045</math> and it is equal to <math>e^x</math> or <math>EXP(1)</math>.
 
*It is called the Mathematical Constant or Euler's Number or Napier's Constant.  
 
*It is called the Mathematical Constant or Euler's Number or Napier's Constant.  

Revision as of 04:50, 28 November 2013

EXP(x)


  • where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} is the number .

Description

  • This function gives the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e} raised to the power of number.
  • In Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle EXP(x)} , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} represents the exponent of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e} or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^x} .
  • The approximate value of the constant Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e=2.718281828459045} and it is equal to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^x} or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle EXP(1)} .
  • It is called the Mathematical Constant or Euler's Number or Napier's Constant.
  • It is the base of natural logarithm.
  • It can be calculate the sum of infinite series: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e=1+\frac{1}{1}+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4} +...}
  • And the inverse function of the natural logarithm function is the exponential function:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{-1}(x) = e^x} .

Examples

  • =EXP(1)=2.718281828459045
  • =EXP(0)=1
  • =EXP(-5)=0.0067379469990
  • =EXP(6.3)=544.5719101259

See Also

References

Exponential function