Difference between revisions of "Manuals/calci/EXP"
Jump to navigation
Jump to search
| Line 3: | Line 3: | ||
==Description== | ==Description== | ||
*This function gives the <math>e</math> raised to the power of number. | *This function gives the <math>e</math> raised to the power of number. | ||
| − | *In <math>EXP(x)</math>, where <math>x</math> represents the exponent of <math>e</math> | + | *In <math>EXP(x)</math>, where <math>x</math> represents the exponent of <math>e</math> or <math>e^x</math>. |
*The approximate value of the constant <math>e=2.718281828459045</math> and it is equal to <math>e^x</math> or <math>EXP(1)</math>. | *The approximate value of the constant <math>e=2.718281828459045</math> and it is equal to <math>e^x</math> or <math>EXP(1)</math>. | ||
*It is called the Mathematical Constant or Euler's Number or Napier's Constant. | *It is called the Mathematical Constant or Euler's Number or Napier's Constant. | ||
Revision as of 04:50, 28 November 2013
EXP(x)
- where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} is the number .
Description
- This function gives the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e} raised to the power of number.
- In Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle EXP(x)} , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} represents the exponent of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e} or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^x} .
- The approximate value of the constant Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e=2.718281828459045} and it is equal to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^x} or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle EXP(1)} .
- It is called the Mathematical Constant or Euler's Number or Napier's Constant.
- It is the base of natural logarithm.
- It can be calculate the sum of infinite series: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e=1+\frac{1}{1}+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4} +...}
- And the inverse function of the natural logarithm function is the exponential function:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{-1}(x) = e^x} .
Examples
- =EXP(1)=2.718281828459045
- =EXP(0)=1
- =EXP(-5)=0.0067379469990
- =EXP(6.3)=544.5719101259