Difference between revisions of "Manuals/calci/NORMDIST"

From ZCubes Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
*In <math> NORMDIST(x,m,sd,cu) ,x</math> is the value of the function,<math> m</math> is the arithmetic mean of the distribution, <math>sd</math> is the standard deviation of the distribution and <math>cu</math> is the logical value that indicating the form of the function.  
 
*In <math> NORMDIST(x,m,sd,cu) ,x</math> is the value of the function,<math> m</math> is the arithmetic mean of the distribution, <math>sd</math> is the standard deviation of the distribution and <math>cu</math> is the logical value that indicating the form of the function.  
 
*Suppose cu is TRUE, this function gives the cumulative distribution, and it is FALSE, this function give the probability mass function.  
 
*Suppose cu is TRUE, this function gives the cumulative distribution, and it is FALSE, this function give the probability mass function.  
*The equation for the normal distribution is: <math> f(x,\mu,\sigma)=\frac{1}{\sigma \sqrt{2\pi}}.e^-\left({\frac{(x-\mu)^2}{2\sigma^2}}\right)</math>, where \mu is the mean of the distribution,\sigma is the standard deviation of the distribution.  
+
*The equation for the normal distribution is: <math> f(x,\mu,\sigma)=\frac{1}{\sigma \sqrt{2\pi}}.e^-\left({\frac{(x-\mu)^2}{2\sigma^2}}\right)</math>, where <math>\mu</math> is the mean of the distribution,<math>\sigma</math> is the standard deviation of the distribution.  
*In this formula, Suppose \mu = 0 and \sigma = 1, then the distribution is called the standard normal distribution or the unit normal distribution.
+
*In this formula, Suppose <math>\mu</math> = 0 and <math>\sigma</math>= 1, then the distribution is called the standard normal distribution or the unit normal distribution.
 
*This function will return the result as error when  any one of the argument is nonnumeric and sd<=0.
 
*This function will return the result as error when  any one of the argument is nonnumeric and sd<=0.
 
when cu is TRUE , this formula is the integral from -infinity to x and cu is FALSE , we can use the same formula.
 
when cu is TRUE , this formula is the integral from -infinity to x and cu is FALSE , we can use the same formula.
 
font><font face="Arial, sans-serif"><font size="2">'''sd'''</font></font><font face="Arial, sans-serif"><font size="2">   is the standard deviation of the distribution.</font></font></font>
 
 
<font color="#000000"><font face="Arial, sans-serif"><font size="2">'''c'''</font></font><font face="Arial, sans-serif"><font size="2">   is a logical value that determines the form of the function. </font></font></font>
 
 
</div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left"> 
 
 
<font color="#000000"><font face="Arial, sans-serif"><font size="2">It calculates the normal distribution for the specified mean and standard deviation. </font></font></font>
 
 
</div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left"><font size="2" color="#7f7f7f" face="Arial">
 
 
·       <font color="#000000"><font face="Arial, sans-serif"><font size="2">NORMDIST displays error for nonnumeric sd. </font></font></font>
 
 
# <font color="#000000"><font face="Arial, sans-serif"><font size="2">When sd &lt;=0, NORMDIST displays error. </font></font></font>
 
# <font color="#000000"><font face="Arial, sans-serif"><font size="2">The equation for the normal density function (cumulative = FALSE) is: </font></font></font>
 
 
<br /><br />
 
 
</font></div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
NORMDIST
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left"> 
 
 
<font color="#000000"><font face="Times New Roman, serif"><font size="3">Let’s see an example in (Column1 Row 1, Column1Row2, Column1Row3)</font></font></font>
 
 
<font color="#000000"><font face="Times New Roman, serif"><font size="3">NORMDIST (C1R1, C1R2, C1R3)</font></font></font>
 
 
<font color="#000000"><font face="Times New Roman, serif"><font size="3">i.e. </font></font></font><font color="#000000"><font face="Trebuchet MS, sans-serif"><font size="3">=NORMDIST (52, 50, 2.5, true)</font></font></font><font color="#000000"><font face="Times New Roman, serif"><font size="3"> is 0.7885</font></font></font>
 
 
<font color="#000000"><font face="Trebuchet MS, sans-serif"><font size="3">UNIQcc0d9c136de91e77-nowiki-00000002-QINU</font></font></font><font color="#000000"><font face="Times New Roman, serif"><font size="3"> is 0.1159.</font></font></font>
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left"><div>
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| class="        " | Column2
 
| class="    " | Column3
 
| class="  " |
 
| class="  " | Column4
 
|
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 52
 
| class="sshl_f" | 0.7885
 
| class="sshl_f" | 0.1159
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 50
 
| class="sshl_f" |
 
| class="sshl_f  SelectTD SelectTD" |
 
<div id="2Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
|- class="odd"
 
| Row3
 
| class="sshl_f" | 2.5
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="  " |
 
| class="sshl_f" |
 
|
 
|- class="even"
 
| Row4
 
| class="sshl_f  " |
 
<div id="2Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class="sshl_f" |
 
|
 
| class=" " |
 
| class="sshl_f" |
 
|
 
|- class="odd"
 
| class="sshl_f" | Row5
 
| class="sshl_f" |
 
| class="  " |
 
|
 
|
 
| class="  " |
 
|
 
|- class="even"
 
| class=" " | Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
| class="sshl_f" |
 
|
 
|
 
|}
 
 
<div align="left"></div>''''''</div></div>
 
----
 

Revision as of 03:30, 1 January 2014

NORMDIST(x,m,sd,cu)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} is the value,Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} is the mean,Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle sd} is the standard deviation and is the logical value like TRUE or FALSE.

Description

  • This function gives the normal distribution for the particular mean and standard deviation.
  • Normal distribution is the function that represents the distribution of many random variables as a symmetrical bell-shaped graph.
  • This distribution is the continuous probability distribution.It is also called Gaussian distribution.
  • In Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle NORMDIST(x,m,sd,cu) ,x} is the value of the function,Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} is the arithmetic mean of the distribution, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle sd} is the standard deviation of the distribution and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle cu} is the logical value that indicating the form of the function.
  • Suppose cu is TRUE, this function gives the cumulative distribution, and it is FALSE, this function give the probability mass function.
  • The equation for the normal distribution is: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,\mu,\sigma)=\frac{1}{\sigma \sqrt{2\pi}}.e^-\left({\frac{(x-\mu)^2}{2\sigma^2}}\right)} , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} is the mean of the distribution,Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} is the standard deviation of the distribution.
  • In this formula, Suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} = 0 and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} = 1, then the distribution is called the standard normal distribution or the unit normal distribution.
  • This function will return the result as error when any one of the argument is nonnumeric and sd<=0.

when cu is TRUE , this formula is the integral from -infinity to x and cu is FALSE , we can use the same formula.