Difference between revisions of "Manuals/calci/MINVERSE"

From ZCubes Wiki
Jump to navigation Jump to search
Line 40: Line 40:
 
\end{bmatrix}
 
\end{bmatrix}
 
</math>
 
</math>
 +
<math>
 
MINVERSE(B5:C6)=
 
MINVERSE(B5:C6)=
<math>
 
 
\begin{bmatrix}
 
\begin{bmatrix}
 
-2 & 3 \\
 
-2 & 3 \\
Line 47: Line 47:
 
\end{bmatrix}
 
\end{bmatrix}
 
</math>
 
</math>
MATRIX A
+
 
A=(3       4
+
<math>Matrix A=
      6       8)
+
\begin{bmatrix}
MINVERSE(C4:D5)=Null, because its det value is 0.
+
3 & 4 \\
MATRIX A
+
6 & 8 \\
A=(2     3
+
\end{bmatrix}
  4     7)
+
</math>
MINVERSE(B4:C5)=(3.5     -1.5
+
 
                -2           1)
+
MINVERSE(C4:D5)=Null, because its determinant value is 0.
 +
 
 +
<math>Matrix A=
 +
\begin{bmatrix}
 +
2 & 3 \\
 +
4 & 7 \\
 +
\end{bmatrix}
 +
</math>
 +
<math>MINVERSE(B4:C5)=<math>Matrix A=
 +
\begin{bmatrix}
 +
3.5 & -1.5 \\
 +
-2 & 1 \\
 +
\end{bmatrix}
 +
</math>
  
 
==See Also==
 
==See Also==

Revision as of 05:17, 1 January 2014

MINVERSE(arr)


  • is the array of numeric elements

Description

  • This function gives the inverse matrix for the given matrix.
  • We have to find a inverse of a matrix then it should satisfy the following conditions
  • 1.A matrix must be a square matrix.
  • 2.It's determinant not equal to 0.
  • Let be the 2x2 matrix with the elements

.

  • Then the inverse of matrix is denoted by .
  • Now let be the matrix is of order .
  • Then the inverse of is
  • Where is the adjoint of .
  • Adjoint is the matrix formed by taking the Transpose of the Co-factor matrix of the original matrix.
  • Also , where is the identity matrix.
  • Non-square matrices do not have inverses.
  • Not all square matrices have inverses.
  • A square matrix which has an inverse is called invertible or non-singular, and a square matrix without an inverse is called non-invertible or singular.
  • This function will return the result as error when
1. Any one of the cell is non-numeric or any cell is empty or contain text
2. Suppose number of rows not equal to number of columns

Examples

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle MINVERSE(B5:C6)= \begin{bmatrix} -2 & 3 \\ 3 & -4 \\ \end{bmatrix} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Matrix A= \begin{bmatrix} 3 & 4 \\ 6 & 8 \\ \end{bmatrix} }

MINVERSE(C4:D5)=Null, because its determinant value is 0.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Matrix A= \begin{bmatrix} 2 & 3 \\ 4 & 7 \\ \end{bmatrix} } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle MINVERSE(B4:C5)=<math>Matrix A= \begin{bmatrix} 3.5 & -1.5 \\ -2 & 1 \\ \end{bmatrix} }

See Also

References