Difference between revisions of "Manuals/calci/MONOMIAL"

From ZCubes Wiki
Jump to navigation Jump to search
 
Line 18: Line 18:
  
 
==Examples==
 
==Examples==
*1.MATRIX("Monomial")
+
*1.MATRIX("Monomial")=1
 +
*2.MATRIX("Monomial",3)
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
Line 27: Line 28:
 
| 0 || 1 || 0  
 
| 0 || 1 || 0  
 
|}
 
|}
*2.MATRIX("Generalized permutation")
+
*3.MATRIX("Generalized permutation",3)
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
Line 36: Line 37:
 
| 0 || 0 || 2  
 
| 0 || 0 || 2  
 
|}
 
|}
3.MATRIX("generalized permutation",5,-10..-2)
+
*4.MATRIX("generalized permutation",5,-10..-2)
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
Line 49: Line 50:
 
| -6 || 0 || 0 || 0 || 0  
 
| -6 || 0 || 0 || 0 || 0  
 
|}
 
|}
 
  
 
==See Also==
 
==See Also==

Latest revision as of 01:27, 26 October 2015

MATRIX("MONOMIAL",order)


  • is the order of the Monomial matrix.

Description

  • This function gives the matrix of order 3 with the property of monomial matrix.
  • A monomial matrix is a square matrix with exactly one nonzero entry in each row and exactly one nonzero entry in each column.
  • So here MATRIX("monomial") is showing the monomial matrix of order 3.
  • Monomial matrix is also called as generalized permutation matrix.
  • So in Calci, users can give the argument as MATRIX("Monomial") or MATRIX(" generalized permutation").
  • An example of monomial or generalized permutation matrix is:

  • So any monomial matrix is the product of a permutation matrix and a diagonal matrix.

Examples

  • 1.MATRIX("Monomial")=1
  • 2.MATRIX("Monomial",3)
0 0 3
2 0 0
0 1 0
  • 3.MATRIX("Generalized permutation",3)
0 3 0
3 0 0
0 0 2
  • 4.MATRIX("generalized permutation",5,-10..-2)
0 0 0 -10 0
0 -9 0 0 0
0 0 -8 0 0
0 0 0 0 -7
-6 0 0 0 0

See Also

References