Difference between revisions of "Manuals/calci/DOTPRODUCT"

From ZCubes Wiki
Jump to navigation Jump to search
Line 6: Line 6:
 
*Dot product is also called Scalar Product.
 
*Dot product is also called Scalar Product.
 
*This product is an example of an Inner product.
 
*This product is an example of an Inner product.
*Dot product of  two vectors is defined as  <math>a=[a_1,a_2,a_3..a_n]</math> and <math>b=[b_1,b_2,b_3..b_n]</math> then a.b= sum i= 1 to n aibi= a1b1+a2b2+...anbn where Σ denotes summation notation and n is the dimension of the vector space.
+
*Dot product of  two vectors is defined as: <math>a=[a_1,a_2,a_3..a_n]</math> and <math>b=[b_1,b_2,b_3..b_n]</math> then <math>a.b= /sum_{i=1}^n a_{i}b_{i}= a_1b_1+a_2b_2+...a_nb_n</math> where <math>\Sigma</math> denotes summation notation and <math>n</math> is the dimension of the vector space.

Revision as of 13:54, 3 March 2017

DOTPRODUCT(a,b)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} are any two set values.

Description

  • This function shows the Dot product of the given numbers.
  • Dot product is also called Scalar Product.
  • This product is an example of an Inner product.
  • Dot product of two vectors is defined as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=[a_1,a_2,a_3..a_n]} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b=[b_1,b_2,b_3..b_n]} then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a.b= /sum_{i=1}^n a_{i}b_{i}= a_1b_1+a_2b_2+...a_nb_n} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Sigma} denotes summation notation and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} is the dimension of the vector space.