Difference between revisions of "Manuals/calci/BETAFUNCTION"
Jump to navigation
Jump to search
| Line 21: | Line 21: | ||
==References== | ==References== | ||
[http://math.feld.cvut.cz/mt/txtd/5/txe3da5h.htm Beta Function] | [http://math.feld.cvut.cz/mt/txtd/5/txe3da5h.htm Beta Function] | ||
| + | |||
| + | |||
| + | |||
| + | *[[Z_API_Functions | List of Main Z Functions]] | ||
| + | |||
| + | *[[ Z3 | Z3 home ]] | ||
Revision as of 01:24, 13 March 2017
BETAFUNCTION (a,b)
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} are any positive real numbers.
Description
- This function returns the value of the Beta function.
- Beta function is also called the Euler integral of the first kind.
- To evaluate the Beta function we usually use the Gamma function.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}} .
- For x,y positive we define the Beta function by:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(x,y)= \int\limits_{0}^{1} t^{x-1}(1-t)^{y-1} dt}
Examples
- BETAFUNCTION(10,23) = 1.550093439705759e-9
- BETAFUNCTION(9.1,7.4) = 0.00001484129272494359
- BETAFUNCTION(876,432) = NaN
See Also
References