Difference between revisions of "Manuals/calci/ACKERMANN"

From ZCubes Wiki
Jump to navigation Jump to search
Line 16: Line 16:
  
 
==Example==
 
==Example==
 +
 +
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Revision as of 06:24, 13 March 2017

ACKERMANN(m,n)


  • and are the positive integers.

Description

  • The Ackermann function is a classic example of a recursive function, notable especially because it is not a primitive recursive function.
  • All primitive recursive functions are total and computable, but the Ackermann function illustrates that not all total computable functions are primitive recursive.
  • Its arguments are never negative and it always terminates.
  • The two-argument Ackermann–Péter function, is defined as follows:

\\

for nonnegative integers m and n.
  • Its value grows rapidly, even for small inputs.

Example