Manuals/calci/BESSELI

From ZCubes Wiki
Revision as of 01:27, 3 December 2013 by Abin (talk | contribs) (→‎Examples)
Jump to navigation Jump to search
BESSELI(x,n)


  • is the value to evaluate the function
  • is an integer which is the order of the Bessel function

Description

  • This function gives the value of the modified Bessel function.
  • Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
  • Bessel's Differential Equation is defined as:

where is the arbitrary complex number.

  • But in most of the cases α is the non-negative real number.
  • The solutions of this equation are called Bessel Functions of order .
  • Bessel functions of the first kind, denoted as .
  • The order modified Bessel function of the variable is:

, where :

  • This function will give the result as error when:
1. or  is non numeric
2., because  is the order of the function.

Examples

  1. BESSELI(3,2) = 2.245212431 this is the derivative of .
  2. BESSELI(5,1) = 24.33564185
  3. BESSELI(6,0) = 67.23440724
  4. BESSELI(-2,1) = 0.688948449
  5. BESSELI(2,-1) = NAN ,because n<0.

See Also

References

Bessel Function