Manuals/calci/RIEMANNZETA

RIEMANNZETA(s)


  • is the value from 0 10 infinity.

Description

  • This function gives the result for the function of Riemann-Zeta function.
  • It is also known as Euler-Riemann Zeta function.
  • This function is useful in number theory for the investigating properties of prime numbers.
  • It is denoted by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \zeta(s)} .
  • This function is defined as the infinite series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \zeta(s)=1+2^{-s}+3^{-s}+.....} .
  • When the value of s=1,then this series is called the harmonic series.
  • When it is increase without any bound or limit, then its sum is infinite.
  • When the value of s is larger than 1,the the series converges to a finite number as successive terms are added.
  • The riemann zeta function is defined for Complex numbers also.
  • So Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \zeta(s)} is a function of a complex variable Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s = \sigma + it} ,where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} and t are real numbers.i is the imaginary unit.
  • It is also a function of a complex variable s that analytically continues the sum of the infinite series , which converges when the real part of s is greater than 1.
  • It is defined by :Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \zeta(s)=\sum_{n=1}^\infty n^{-s}= \frac{1}{1^s}+\frac{1}{2^s}+\frac{1}{3^s}+.....} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} =Real part of s>1.
  • We can define this by integral also:Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle zeta(s)=\frac{1}{\Gamma(s)}\int\limits_{0}^{\infty} \frac{x^{s-1}{e^{x-1}\,dx }
  • Riemann zeta function is a meromorphic function on the whole complex s-plane, which is holomorphic everywhere except for a simple pole at s = 1 with residue 1.
  • (For special values:(i)Any positive integer 2n.for n ≥ 1)so in particular ζ vanishes at the negative even integers because Bm = 0 for all odd m other than 1.
  • For odd positive integers, no such simple expression is known.
    • When s=1,then ζ (1) is Harmonic series.
    • when s=2, then ζ (2) derivation is Basel problem.
    • when s=3, then ζ (3) derivation is Apery's constant.
    • When s=4, then ζ (4) derivation is Planck's law