Manuals/calci/BERNOULLIDISTRIBUTED

From ZCubes Wiki
Revision as of 15:00, 4 December 2018 by Devika (talk | contribs) (→‎Examples)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
BERNOULLIDISTRIBUTED (Numbers,Probability)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Numbers } is the number of variables.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Probability} is the value range from 0 to 1.

Description

  • This function gives the value of the Bernoulli distribution.
  • It is a discrete probability distribution.
  • Bernoulli distribution is the theoretical distribution of the number of successes in a finite set of independent trials with a constant probability of success.
  • The Bernoulli distribution is simply BINOM(1,P).
  • This distribution best describes all situations where a trial is made resulting in either success or failure, such as when tossing a coin, or when modeling the success or failure.
  • In Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle BERNOULLIDISTRIBUTED(Numbers,Probability)} ,Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Numbers} represents the number of variables.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Probability} is the probability value.
  • The Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Probability} vaule is ranges from 0 to 1.
  • The Bernoulli distribution is defined by:Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=p^x(1-p)^{1-x} } for x={0,1}, where p is the probability that a particular event will occur.
  • The probability mass function is :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(k,p) = \begin{cases} p if & k=1\\ (1-p) if & k=0. \\ \end{cases}}

  • This function will give the result as error when
1. Any one of the argument is non numeric.
2. The value of p<0 or p>1.

Examples

  1. BERNOULLIDISTRIBUTED(5,0.5) = 0 0 0 0 1
  2. BERNOULLIDISTRIBUTED(9,0.8) = 0 1 1 1 1 1 1 1 1
  3. BERNOULLIDISTRIBUTED(4,0.87) = 1 1 1 0

Related Videos

Bernoulli Distribution

See Also

References

Bernoulli Distribution