Here are test cases to try out on ZCubes Code Cubes. Please note that all of the below follow the Z3 Language (Enhanced from Javascript), and hence apart from being simple, it gives you full programming capability.
Simple Matrix Creation
a=[1 2; 3]
a=[[1,2],[3]]
a=[1 2; 3 4]
a=[1 20; 2 3]
a=[[1, 20],[2, 3]]
a=[[1, 20],[2, [3 4]]];
a=[[1, 20],[2, [3; 4]]];
a=[[1, 20],[2, [3; 4;]]]; // worked with after 4 nothing was taken. Is that something to change later? with a null?
a=[1 20; 2;[3,4]; 3]
a=[1, (a+b); 2;[3,4]; 3]
a=[1*(a+b); 2;[3,4]; 3]
a=[1*(a+b); 2;[3,4+34]; 3];
Matrix Operators
|a|;
|10|;
a=|44|
b=34
Object Initialization
a=[3,4,2..20]
a={"car":a}
Creating Multi-Dimensional Matrices of Required Sizes
a=|4x3x3|
Matrix Operators
a=|3||*||4|
a=|5x5|
a=|5|
|10x3|
a=a|x+3|b;
a=|5||+||5|
a=|5||\||5| //for INTDIV
a=|5||/\||5| //for DIVPARTS
a=|5||%||5| //for MATRIXMOD
a=|3||CHIDIST||4| // should we make this CHIDIST with MOP? Could decide later for MATRIXOPS
1..100@"x^2"
Combanatorial Arguments and Implicit Looping
CHIDIST(1..100,2..3) .graph(1,0)
[Other]
[1..2,1..4,1..20]@"x^3+y^2+z^3"
FOR 20..30 "det(MAGICSQUARE(x))";
a=FOR 1..100 SIN;
a= FOR 20..30 "det(MAGICSQUARE(x))";
var a=FOR 20..30 "det(MAGICSQUARE(x))";
var a=FOR 20..30 "det(MAGICSQUARE(x))",b=FOR 1..100 COS;
radpiby3
a=SIN(radpiby3)
1..100.fillwith(1..10)
(1..100).fillwith(1..10)
(1..100..10).fillwith(1..10)
1..100.fillwith(10..100).$(CIRCLE)
1..100 .fillwith(10..100).$(CIRCLE)
1..100..130.fillwith(10..100).$(CIRCLE)
SIN@1..100@COS
SIN@1..100
1..100@COS
1..100..10@COS
1..100..10.fillwith(10..100).$(CIRCLE)
1..100.23..1023.1 .fillwith(10..1020).$(CIRCLE)
1..100..10.fillwith(1..10)
FOR 20..30 "det(MAGICSQUARE(x))";
FOR 20..30 "det(MAGICSQUARE(x))";
FOR 20..30 "det(MAGICSQUARE(x))";
1...100.0343..103.fillwith(1..10)
a=[1 (a+b); 2;[3,4]; 3]
Javascript Code & Z3
function z() { if(a<3) { return(false); } }
function () { if(a<3) { return(false) } }
A=(|3x4|@4.3)@SIN
|4|.$i([SUM,SIN,COS]);
|4|.$i(SUM,SIN,COS)
[["cats1","dogs1"],"birds"]<<<[[2,[COS]],[SIN]]
[["cats1","dogs1"],"birds"]<<<<[[2,[COS]],[SIN]]
[["cats1","dogs1"],"birds"]>>>>[[2,[COS]],[SIN]]
Series Comprehension
[#a-z,#A-Z,1..10,4..500]
a=#a-z
a=#1/1/16
var a=#;
b=#;
c=#;
d=#;
PMT(#1/1/2011,#2/2012) // worked
var a=#a-x;
b=#1/1/2011;
a = a < 34 ? 3
Range Referencing
#TABLE3!A3:E6
a=#TABLE3!A3:E6
a=#A3:E6
a=SIN(#D8:E11,#H11:K12)
#TABLE3!A3:E6
a=#TABLE3!A3:E6
a=#A3:E6
#D8:E11
#TABLE3!A3:E6
[1,2,undefined,#].$(SIN)
a=[#1/1/2011,#2/2/2015]
[1,2,undefined].$(SIN)
[1,2,undefined,#].$(SIN)
v:=u+a*t
E=m*c^2;
Simple, Beautiful Notations
a=5!;
b=5%;
a=(a+x)!;
a=(a+x)*!34;
a=(5!)!
a=5!! will not work.
a=34!P!3
a=34!C!3
a=34!P!3!C!3
var a=2;
v:=u+a*t;
var b=3;
var a=2;
var v:=u+a*t;
var b=3;
var a=2;
var v:=u+a*t;
var b=3;
var a=2;
var v:=u+a*t,d=34;
var b=3;
var a=#a-x,d=#1/1/2011;
# means undefined by itself.
ad := a+b
1..3**3.$d (SIN)
(1..3**3).$d (SIN)
PRODUCT(n..1..-3)
a=#,b=#,c=#
FACTTRIPLE=PRODUCT(n..1..-3)
FACTTRIPLE:=PRODUCT(n..1..-3)
Conditional Matrix Projection
1..10|x<4|
1..10|x?x<4|
1..10|x?x<4:u|
1..10|x?x<4:u|1..10
1..10|x?u+x<4:u|1..10
|4||x?x<4:false||34| ;
|4||x?x<4||34|;
|4||x?x<4||34| ;
|4||x?x<4:34+y+z||34|;
|4||x?x<4|;
|4||x<4|;
|1||x<4||x>10|
1..10|x<4&&y>9|2..20
a=3!
a=100..|x+y|3
..100
10..
1..10|x<4|
1..10|x<4|34
1..10|x^3&&x^3<3000?x|w
0..10@"SIN(x^2,1..10)" .graph()
0..10@("SIN(x^2,1..10)" .graph())
0..10@"SIN(x^2,1..23..10)".graph(30).sin()
0..10@"SIN(x^2,1..23..10)".graph(30).sin()
1..1000..100@["x^2",COS] .graph()
0..10@"SIN(x^2,1..10)" .graph()
0..10@("SIN(x^2,1..10)" .graph())
0..10@"SIN(x^2,1..23..10)".graph(30).sin()
0..10@"SIN(x^2,1..23..10)".graph(30).sin()
0..10@"SIN(x^2,1..10)" .graph()
SIN(x^2,1..10)
1..3**3.$d (SIN)
(1..3**3).$d (SIN)
(1..1000..100@["x^2",COS] .$(SIN)) @SIN
0..10@"SIN(x^2)" .graph()
0..10@"SIN(x^2)".graph()
1..10|x<4|34
1..10|(x?x<4)|
var a=FOR 20..30 "det(MAGICSQUARE(x))", b=FOR 1..100 COS;
a=[1*(a+b); 2;[3,4+34]; 3]
|a| |10|
a=[1*(a+b); 2;[3,4+34]; 3]; |a|; |10|
PMT(100000,44%,40)
a=FOR(PMT, 100000,41% ,1..12)
pmt12:=PMT(x,y,12);
PMT(1000,26%)
vary...
Θ=3+x;
Θ(34)
അത:=34+അതx;
അത(4)
/*Enter Code Here in Z3/Javascript...*/
var a=10;
for(var b=1;b<a;b++)
{
console.log(b)
}
/*Enter Code Here in Z3/Javascript...*/
function test()
{
var a=25;
c=[]
for(var b=1;b<a;b++)
{
c.push(b)
}
return(c);
}
test()