Difference between revisions of "Manuals/calci/STDEVP"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left">  <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''STDEVP'''</font></font></font><font color="#...")
 
 
(9 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"> 
+
<div style="font-size:30px">'''STDEVP()'''</div><br/>
 +
*Parameters are set of numbers.
 +
**STDEVP(),calculates standard deviation based on the entire population
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''STDEVP'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(N</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''1'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">,N2,...)</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''Where N1,N2, ...'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2"> are the arguments . </font></font></font>
+
==Description==
 +
*This function gives the standard deviation based on a entire population as the the given data .
 +
*Standard Deviation is a quantity expressing by how much the members of a group differ from the mean value for the group.
 +
*It is the  used as a measure of the dispersion or variation in a distribution. 
 +
*It is calculated as the square root of variance.
 +
*In <math>STDEVP()</math>, Parameters are set of numbers to find the Standard Deviation.  
 +
*Here First Parameter is required. From the second parameter are optional.  
 +
*Instead of numbers we can use the single array or a reference of a array.
 +
*<math> STDEVP </math> is defined by the formula:
 +
<math>S.D= \sqrt \frac {\sum(x-\bar{x})^2}{(n-1)} </math>
 +
where <math> \bar{x} </math> is the sample mean of x and n is the total numbers in the given data. 
 +
*It is calculated using <math> n </math> method.
 +
*This function is considering our given data as the entire population.
 +
*Suppose it should consider the data as the sample of the population, we can use the [[Manuals/calci/STDEV  | STDEV ]] function.  
 +
*For  huge sample sizes the functions <math> STDEV </math> and <math> STDEVP </math> are approximately equal values.
 +
*The arguments can be  either numbers or names, array,constants or references that contain numbers.
 +
*Suppose the array contains text,logical values or empty cells, like that values are not considered.
 +
*When we are entering logical values and text representations of numbers  as directly, then the arguments are counted.
 +
*Suppose the function have to consider the logical values and text representations of numbers in a reference , we can use the [[Manuals/calci/STDEVPA  | STDEVPA ]] function.
 +
*This function will return the result as error when 
 +
    1. Any one of the argument is non-numeric.
 +
    2. The arguments containing the error values or text that cannot be translated in to numbers.
  
</div>
+
==Examples==
----
+
{| class="wikitable"
<div id="1SpaceContent" class="zcontent" align="left"> 
+
|+Spreadsheet
 
+
|-
<font color="#484848"><font face="Arial, sans-serif"><font size="2">This function calculates the standard deviation on the entire population. </font></font></font>
+
! !! A !! B !! C !! D!! E !!F!! G
 
+
|-
</div>
+
! 1
----
+
| 87 || 121 || 427 ||390 || 110 || 54 || 32
<div id="7SpaceContent" class="zcontent" align="left"
+
|-
 
+
! 2
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">S D is calculated by the "n" method.</font></font></font>
+
| 2 || 2.4 || 3.7 || 14.9 || 28 || 198 || 154.1
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">The Arguments can be numbers or names, arrays, or references. </font></font></font>
+
|-
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">Empty cells, logical values, text, or error values are ignored. </font></font></font>
+
! 3
* ** <font color="#484848"><font face="Arial, sans-serif"><font size="2">STDEVP is counted using this formula: </font></font></font>
+
| 9  || -4  ||-29  ||38 || 101 || 19 || 45
** <font color="#484848"></font><br /><br /><font color="#484848"><font face="Arial, sans-serif"><font size="2">Where x is the sample mean average (V1,V2........) and n is the sample size.</font></font></font>
+
|}
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
STDEVP
 
  
</div></div>
+
#=STDEVP(A1:E1) = 149.0597195757
----
+
#=STDEVP(A2:G2) = 76.31463871127
<div id="8SpaceContent" class="zcontent" align="left"><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''Lets see an example,'''</font></font></font>
+
#=STDEVP(A3:E3) = 44.58250778015
 +
#=STDEVP(0,2,8,10,11.7,23.8,32.1,43.7) = 14.389530699435
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">150</font></font></font>
+
==Related Videos==
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">130</font></font></font>
+
{{#ev:youtube|nQHG12zgl7I|280|center|STDEVP}}
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">165</font></font></font>
+
==See Also==
 +
*[[Manuals/calci/DSTDEV | DSTDEV]]
 +
*[[Manuals/calci/DSTDEVP  | DSTDEVP ]]
 +
*[[Manuals/calci/STDEV  | STDEV ]]
 +
*[[Manuals/calci/STDEVA| STDEVA]]
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">132</font></font></font>
+
==References==
 +
*[http://en.wikipedia.org/wiki/Standard_deviation Standard Deviation]
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">110</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">137</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">121</font></font></font>
+
*[[Z_API_Functions | List of Main Z Functions]]
 
 
<font face="Arial, sans-serif"><font size="2"><nowiki>=STDEVPA(B2:B8)is 16.84</nowiki></font></font>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class="    " |
 
| class="  " | Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f " | 150
 
| class="sshl_f" | 16.835337
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f  " | 130
 
| class="SelectTD" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f  " | 165
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f  " | 132
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f  " | 110
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="sshl_f" | Row6
 
| class="sshl_f  " | 137
 
| class="sshl_f  " |
 
| class="sshl_f  " |
 
| class="sshl_f" |
 
|- class="odd"
 
| class="sshl_f" | Row7
 
| class="sshl_f " | 121
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
  
<div align="left">[[Image:calci1.gif]]</div></div>
+
*[[ Z3 |   Z3 home ]]
----
 
<div id="9SpaceContent" class="zcontent" align="left"><div>[[Image:untitled.GIF|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/untitled.GIF]]</div></div>
 
----
 

Latest revision as of 17:19, 8 August 2018

STDEVP()


  • Parameters are set of numbers.
    • STDEVP(),calculates standard deviation based on the entire population


Description

  • This function gives the standard deviation based on a entire population as the the given data .
  • Standard Deviation is a quantity expressing by how much the members of a group differ from the mean value for the group.
  • It is the used as a measure of the dispersion or variation in a distribution.
  • It is calculated as the square root of variance.
  • In , Parameters are set of numbers to find the Standard Deviation.
  • Here First Parameter is required. From the second parameter are optional.
  • Instead of numbers we can use the single array or a reference of a array.
  • is defined by the formula:

where is the sample mean of x and n is the total numbers in the given data.

  • It is calculated using method.
  • This function is considering our given data as the entire population.
  • Suppose it should consider the data as the sample of the population, we can use the STDEV function.
  • For huge sample sizes the functions and are approximately equal values.
  • The arguments can be either numbers or names, array,constants or references that contain numbers.
  • Suppose the array contains text,logical values or empty cells, like that values are not considered.
  • When we are entering logical values and text representations of numbers as directly, then the arguments are counted.
  • Suppose the function have to consider the logical values and text representations of numbers in a reference , we can use the STDEVPA function.
  • This function will return the result as error when
   1. Any one of the argument is non-numeric. 
   2. The arguments containing the error values or text that cannot be translated in to numbers.

Examples

Spreadsheet
A B C D E F G
1 87 121 427 390 110 54 32
2 2 2.4 3.7 14.9 28 198 154.1
3 9 -4 -29 38 101 19 45
  1. =STDEVP(A1:E1) = 149.0597195757
  2. =STDEVP(A2:G2) = 76.31463871127
  3. =STDEVP(A3:E3) = 44.58250778015
  4. =STDEVP(0,2,8,10,11.7,23.8,32.1,43.7) = 14.389530699435

Related Videos

STDEVP

See Also

References