Manuals/calci/ADJ

From ZCubes Wiki
Jump to navigation Jump to search
ADJ(Array)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Array} is the set of values.

Description

  • This function shows the Adjoint of a given matrix.
  • In Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ADJ(Array)} ,Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Array} is the set of matrix values.
  • Adjoint of a matrix is called adjugate, classical adjoint, or adjunct.Adjoint of a matrix formed by taking the transpose of the cofactor matrix of a given original Square matrix.
  • Adjoint of matrix A is written by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle adj A} .
  • The adjugate of A is the transpose of the cofactor matrix C of A, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle adj(A)= C^T} .
  • Also adjoint of a matrix is defined by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle adj(A)= det(A).A^{-1}} .
  • The adjugate of 1x1 matrix is .
  • The adjugate of 2x2 matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle :A= \begin{pmatrix} a & b \\ c & d \end{pmatrix} } is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle adj(A)=\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}} .
  • Consider3x3 matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} } .
  • Its adjugate is the transpose of its cofactor matrix:Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle adj(A)=C^{T} = \begin{pmatrix} +\begin{vmatrix} a_ {22}& a_{23} \\ a_ {32}& a_{33} \end{vmatrix} & - \begin{vmatrix} a_ {12}& a_{13} \\ a_ {32}& a_{33} \end{vmatrix} & +\begin{vmatrix} a_ {12}& a_{13} \\ a_ {22}& a_{23} \end{vmatrix} \\ +\begin{vmatrix} a_ {21}& a_{23} \\ a_ {31}& a_{33} \end{vmatrix} & - \begin{vmatrix} a_ {11}& a_{13} \\ a_ {31}& a_{33} \end{vmatrix} & +\begin{vmatrix} a_ {11}& a_{13} \\ a_ {21}& a_{23} \end{vmatrix} \\ +\begin{vmatrix} a_ {21}& a_{22} \\ a_ {31}& a_{32} \end{vmatrix} & - \begin{vmatrix} a_ {11}& a_{12} \\ a_ {31}& a_{32} \end{vmatrix} & +\begin{vmatrix} a_ {11}& a_{12} \\ a_ {21}& a_{22} \end{vmatrix} \\ \end{pmatrix}}

Examples

1.adj([[10,12],[-14,21]])

21 -12
14 10

2.adj([[4,5,8],[3,-6,-9],[10,-12,4]])

-132 -116 2.9999999999999982
-102 -64 60
24 98 -39

3.adj([[5,-2,2,7],[1,0,0,3], [-3,1,5,0], [3,-1,-9,4]])

-12 76 -60 -36
-56 207.99999999999997 -81.99999999999999 -57.99999999999999
4 3.999999999999999 -1.9999999999999998 -10
4 3.9999999999999982 20 12

Related Videos

Adjoint Matrix

See Also

References