Manuals/calci/ANTISYMMETRIC

From ZCubes Wiki
Jump to navigation Jump to search
MATRIX("ANTISYMMETRIC",order)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle order } is the order of the Anti diagonal matrix.

Description

  • This function gives the matrix of order 3 which is satisfying the anti symmetric properties.
  • An antisymmetric matrix is a square matrix that satisfies the identity A=-A^(T) ,where A^(T) is the matrix transpose.
  • For example, A= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ \end{bmatrix}}
  • So the form of anti symmetric is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} 0 & a12 & a13 \\ -a12 & 0 & a23 \\ -a13 & -a23 & 0 \\ \end{bmatrix}}
  • Antisymmetric matrices are commonly called "skew symmetric matrices" or "antimetric".
  • So in CALCI,users can give the syntax as:
  • 1.MATRIX("anti-symmetric")
  • 2.MATRIX("antisymmetric")
  • 2.MATRIX("skewsymmetric")
  • 3.MATRIX("skew-symmetric")
  • Here this is case-insensitive.

Examples

  • MATRIX("antisymmetric",3)
0 50 -87
-50 0 12
87 -12 0
  • MATRIX("anti-symmetric",4)
0 31 -41 -44
-31 0 67 -88
41 -67 0 100
44 88 -100 0
  • MATRIX("skewsymmetric",2)
0 -78
78 0
  • MATRIX("skew-symmetric",5)
0 34 -3 79 -7
-34 0 94 81 93
3 -94 0 81 -58
-79 -81 -81 0 -83
7 -93 58 83 0

Related Videos

Symmetric Matrices

See Also

References