# Manuals/calci/DESCRIPTIVESTATISTICS

DESCRIPTIVESTATISTICS (AreaArray,GroupBy,ConfidenceLevelPercentage,KthLargest,KthSmallest,IsFirstRowLabels, NewTableFlag)

where,

• is array of integers or reference to the cells containing array,
• is a method that performs the analysis by Columns or Rows,
• represents the confidence level for mean of data points and is between 0 to 100,
• represents the Kth largest value for each range of data,
• represents the Kth smallest value for each range of data,
• is a logical value that determines if the first row has any label,
• is a logical value that determines how the output should be displayed.

DESCRIPTIVESTATISTICS(), calculates a range of statistical measurements and summarises them into a table.

## Description

DESCRIPTIVESTATISTICS (AreaArray,GroupBy,ConfidenceLevelPercentage,KthLargest,KthSmallest, IsFirstRowLabels,NewTableFlag)

• can be numbers or can be names, arrays or references containing numbers.
• Values containing text, logical values or empty cells are ignored.
• Argument can be "Rows" or "Columns".
• If < '0' or > '100', Calci displays an error message.
• If < '0' or > 'Length of array', Calci displays an error message.
• can be a logical value TRUE or FALSE.
• can be a logical value TRUE or FALSE. If omitted, Calci assumes it to be TRUE.
• If is TRUE, output is displayed on a new ZSpace cube. If is FALSE, output is displayed on the same spreadsheet where command is written.
• If data is invalid, Calci displays NaN error message.

## ZOS

• The syntax is to use this function in ZOS is
• For e.g., DESCRIPTIVESTATISTICS([[8,7,11,7,33],[8,8,11,18,37]],"columns",95,1,1,false,true)

## Examples

Consider the following table with two arrays as input to DESCRIPTIVESTATISTICS() function -

 Column1 Column2 Column3 Column4 Row1 8 8 Row2 7 8 Row3 11 11 Row4 7 18 Row5 33 37 Row6
```=DESCRIPTIVESTATISTICS(A2:B6,"Columns",95,1,1,FALSE,TRUE)
=DESCRIPTIVESTATISTICS(A2:B6,"Rows",95,2,1,FALSE,TRUE)
```

DESCRIPTIVESTATISTICS() displays the respective output for above examples -

Descriptive Statistics
Column 1
Mean 13.2
Standard Error 5.0039984012787215
Median 8
Mode 7
Standard Deviation 11.189280584559492
Sample Variance 125.20000000000002
Kurtosis 4.552218048566379
Skewness 2.121996141236003
Range 26
Minimum 7
Maximum 33
Sum 66
Count 5
Confidence Level 95% 13.8933265079393
Largest(1) 33
Smallest(1) 7

Descriptive Statistics
Column 2
Mean 16.4
Standard Error 5.4644304369257
Median 11
Mode 8
Standard Deviation 12.218837915284743
Sample Variance 149.3
Kurtosis 2.704996615148442
Skewness 1.6908658101947216
Range 29
Minimum 8
Maximum 37
Sum 82
Count 5
Confidence Level 95% 15.171690746489805
Largest(1) 37
Smallest(1) 8

Descriptive Statistics
Row 1
Mean 8
Standard Error 0
Median 8
Mode 8
Standard Deviation 0
Sample Variance 0
Kurtosis NaN
Skewness NaN
Range 0
Minimum 8
Maximum 8
Sum 16
Count 2
Confidence Level 95% 0
Largest(2) 8
Smallest(1) 8

Descriptive Statistics
Row 2
Mean 7.5
Standard Error 0.5
Median 7.5
Mode #ERROR
Standard Deviation 0.7071067811865476
Sample Variance 0.5000000000000001
Kurtosis NaN
Skewness NaN
Range 1
Minimum 7
Maximum 8
Sum 15
Count 2
Confidence Level 95% 6.353102368087358
Largest(2) 7
Smallest(1) 7

Descriptive Statistics
Row 3
Mean 11
Standard Error 0
Median 11
Mode 11
Standard Deviation 0
Sample Variance 0
Kurtosis NaN
Skewness NaN
Range 0
Minimum 11
Maximum 11
Sum 22
Count 2
Confidence Level 95% 0
Largest(2) 11
Smallest(1) 11

Descriptive Statistics
Row 4
Mean 12.5
Standard Error 5.499999999999999
Median 12.5
Mode #ERROR
Standard Deviation 7.7781745930520225
Sample Variance 60.49999999999999
Kurtosis NaN
Skewness NaN
Range 11
Minimum 7
Maximum 18
Sum 25
Count 2
Confidence Level 95% 69.88412604896092
Largest(2) 7
Smallest(1) 7

Descriptive Statistics
Row 5
Mean 35
Standard Error 2
Median 35
Mode #ERROR
Standard Deviation 2.8284271247461903
Sample Variance 8.000000000000002
Kurtosis NaN
Skewness NaN
Range 4
Minimum 33
Maximum 37
Sum 70
Count 2
Confidence Level 95% 25.41240947234943
Largest(2) 33
Smallest(1) 33

## Related Videos

DESCRIPTIVE STATISTICS