Manuals/calci/Examples1
DESCRIPTION
- Basic Engineering examples in z3.
- Reflecting different domains like Engineering, Statistics, Medicine, etc.
- Set of cases that are progressively complex on units are used to show the user how it goes from simple to complex cases.
- Testing how we can make better solutions to the standard problems compared to other software, due to the presence of units.
Examples
ExampleS1: Chemical Engineering
An exhaust pipe is 75mm diameter and it is cooled by surrounding it with a water jacket. The exhaust gas enters at 350C and the water enters at 10C. The surface heat transfer coefficients for the gas and water are 300 and 1500 W/m2K respectively. The wall is thin so the temperature drop due to conduction is negligible. The gasses have a mean specific heat capacity Cp of 1130 J/kgK and they must be cooled to 100C. The specific heat capacity of the water is 4190 J/kgK. The flow rate of the gas and water is 200 and 1400 kg/h respectively. Calculate the required length of pipe for parellel flow and contra flow.
* The following example demonstrates how a problem is solved when units are used. * The units may be SI, Imperial or a mix of both. * Code shows how to assign a unit or convert a unit. * 3 types of calculations are shown: Normal, using Function, using Function1 in Function2.
/*Overall Heat transfer coefficient
U = 1/((1/hg)+(1/hw)+(x/k))
//wall very thin. So, x ≈ 0
U = 1</>((1</>hg)+(1</>hw))*/
x = 0 //wall very thin
hg = 300(W/m2.degK) //heat transfer coefficient of water
hw = 1500(W/m2.degK) //heat transfer coefficient of gas
cpg = 1130(J/kg.degK) //mean specific heat capacity of gas (Cp)
cpw = 4190(J/kg.degK) //specific heat capacity of gas
mg = 200(kg/hr) //flow rate of gas
mw = 1400(kg/hr) //flow rate of water
D = 75mm //given exhaust pipe diameter
tg1 = 350degC<>degK //temp. of gas entering
tg2 = 100degC<>degK //temp. of gas to be cooled to
tw1 = 10degC<>degK //temp. of water entering
U = 1</>((1</>hg)<+>(1</>hw))
delt = tg1<->tg2
φ = mg<*>cpg<*>delt
tw2 = tw1<+>(φ</>(mw<*>cpw))
//Parallel flow
delti = tg1<->tw1
delt0 = tg2<->tw2
A = φ<*>(log(delt0</>delti))</>(U<*>(delt0<->delti))
L = A</>(π<*>D)
//answer:1.48m
//Contra Flow
delti = tg1<->tw2
delt0 = tg2<->tw1
A = φ<*>(log(delt0</>delti))</>(U<*>(delt0<->delti))
L = A</>(π<*>D)
//answer:1.44m
function LengthParallelContraFlow(hg,hw,cpg,cpw,mg,mw,tg1,tg2,tw1,D)
{
//Overall Heat transfer coefficient
//U = 1/((1/hg)+(1/hw)+(x/k))
var x = 0 //wall very thin
//U = 1</>((1</>hg)+(1</>hw))
var U = 1</>((1</>hg)<+>(1</>hw))
var delt = tg1<->tg2
var φ = mg<*>cpg<*>delt
var tw2 = tw1<+>(φ</>(mw<*>cpw))
//Parallel flow
var delti = tg1<->tw1
var delt0 = tg2<->tw2
var A1 = φ<*>(log(delt0</>delti))</>(U<*>(delt0<->delti))
var LParallel = A1</>(π<*>D)
//answer:1.48m
//Contra Flow
delti = tg1<->tw2
delt0 = tg2<->tw1
var A2 = φ<*>(log(delt0</>delti))</>(U<*>(delt0<->delti))
var LContra = A2</>(π<*>D)
//answer:1.44m
return ["LParallel=" LParallel<>m;"LContra=" LContra<>m]
}
hg = 300(W/m2.degK) //heat transfer coefficient of water
hw = 1500(W/m2.degK) //heat transfer coefficient of gas
cpg = 1130(J/kg.degK) //mean specific heat capacity of gas (Cp)
cpw = 4190(J/kg.degK) //specific heat capacity of gas
mg = 200(kg/hr) //flow rate of gas
mw = 1400(kg/hr) //flow rate of water
D = 75mm //given exhaust pipe diameter
tg1 = 350degC<>degK //temp. of gas entering
tg2 = 100degC<>degK //temp. of gas to be cooled to
tw1 = 10degC<>degK //temp. of water entering
LengthParallelContraFlow(hg,hw,cpg,cpw,mg,mw,tg1,tg2,tw1,D)
Result:
LParallel= 1.4801324499356323m
LContra= 1.4414317039664961m
function LengthParallelContraFlow(hg,hw,cpg,cpw,mg,mw,tg1,tg2,tw1,D)
{
//Overall Heat transfer coefficient
//U = 1/((1/hg)+(1/hw)+(x/k))
var x = 0 //wall very thin
//U = 1</>((1</>hg)+(1</>hw))
var U = 1</>((1</>hg)<+>(1</>hw))
var delt = tg1<->tg2
var φ = mg<*>cpg<*>delt
var tw2 = tw1<+>(φ</>(mw<*>cpw))
//Parallel flow
var delti = tg1<->tw1
var delt0 = tg2<->tw2
var A1 = φ<*>(log(delt0</>delti))</>(U<*>(delt0<->delti))
var LParallel = A1</>(π<*>D)
//answer:1.48m
//Contra Flow
delti = tg1<->tw2
delt0 = tg2<->tw1
var A2 = φ<*>(log(delt0</>delti))</>(U<*>(delt0<->delti))
var LContra = A2</>(π<*>D)
//answer:1.44m
return (LParallel<>m)
}
LengthParallelContraFlow ⩨;
hg = 300(W/m2.degK) //heat transfer coefficient of water
hw = 1500(W/m2.degK) //heat transfer coefficient of gas
cpg = 1130(J/kg.degK) //mean specific heat capacity of gas (Cp)
cpw = 4190(J/kg.degK) //specific heat capacity of gas
mg = 200(kg/hr) //flow rate of gas
mw = 1400(kg/hr) //flow rate of water<>
D = (75..80)<>mm /*given exhaust pipe diameter*/
tg1 = 350degC<>degK //temp. of gas entering
tg2 = 100degC<>degK //temp. of gas to be cooled to
tw1 = 10degC<>degK //temp. of water entering
LengthParallelContraFlow(hg,hw,cpg,cpw,mg,mw,tg1,tg2,tw1,D)
Result:
hg hw cpg cpw mg mw tg1 tg2 tw1 D LParallel
300W.m-2.K-1 1500W.m-2.K-1 1130J.kg-1.K-1 4190J.kg-1.K-1 200kg.hr-1 1400kg.hr-1 623.15K 373.15K 283.15K 75mm 1.4801324499356323m
300W.m-2.K-1 1500W.m-2.K-1 1130J.kg-1.K-1 4190J.kg-1.K-1 200kg.hr-1 1400kg.hr-1 623.15K 373.15K 283.15K 76mm 1.460657022962795m
300W.m-2.K-1 1500W.m-2.K-1 1130J.kg-1.K-1 4190J.kg-1.K-1 200kg.hr-1 1400kg.hr-1 623.15K 373.15K 283.15K 77mm 1.4416874512360054m
300W.m-2.K-1 1500W.m-2.K-1 1130J.kg-1.K-1 4190J.kg-1.K-1 200kg.hr-1 1400kg.hr-1 623.15K 373.15K 283.15K 78mm 1.4232042787842618m
300W.m-2.K-1 1500W.m-2.K-1 1130J.kg-1.K-1 4190J.kg-1.K-1 200kg.hr-1 1400kg.hr-1 623.15K 373.15K 283.15K 79mm 1.405189034749018m
300W.m-2.K-1 1500W.m-2.K-1 1130J.kg-1.K-1 4190J.kg-1.K-1 200kg.hr-1 1400kg.hr-1 623.15K 373.15K 283.15K 80mm 1.3876241718146551m
function HeatTransferCoefficient(hg,hw)
{
//Overall Heat transfer coefficient
//U = 1/((1/hg)+(1/hw)+(x/k))
var x = 0 //wall very thin
//U = 1</>((1</>hg)+(1</>hw))
var U = 1</>((1</>hg)<+>(1</>hw))
return [U]
}
hg = 300(W/m2.degK)
hw = 1500(W/m2.degK)
HeatTransferCoefficient(hg,hw)
/*250W.m-2 .K-1*/
function LengthParallelContraFlow(tw1,mg,mw,cpg,cpw,tg1,tg2)
{
var delt = tg1<->tg2
var φ = mg<*>cpg<*>delt
var tw2 = tw1<+>(φ</>(mw<*>cpw))
//Parallel flow
var delti = tg1<->tw1
var delt0 = tg2<->tw2
var A1 = φ<*>(log(delt0</>delti))</>(HeatTransferCoefficient(hg,hw)<*>(delt0<->delti))
var LParallel = A1</>(π<*>D)
//answer:1.48m
//Contra Flow
delti = tg1<->tw2
delt0 = tg2<->tw1
var A2 = φ<*>(log(delt0</>delti))</>(HeatTransferCoefficient(hg,hw)<*>(delt0<->delti))
var LContra = A2</>(π<*>D)
//answer:1.44m
return ["LParallel=" LParallel<>m;"LContra=" LContra<>m]
}
cpg = 1130(J/kg.degK)
cpw = 4190(J/kg.degK)
mg = 200(kg/hr)
mw = 1400(kg/hr)
tw1 = 10degC<>degK
tg1 = 350degC<>degK
tg2 = 100degC<>degK
LengthParallelContraFlow(tw1,mg,mw,cpg,cpw,tg1,tg2)
Result:
LParallel= 1.4801324499356323m
LContra= 1.4414317039664961m
ExampleS2: Civil Engineering
A steel pipe 5 ft (1.5 m) in diameter and 3/5 in. (9.53 mm) thick sustains a fluid pressure of
180 lb/sq.in. (1241.1 kPa). Determine the hoop stress, the longitudinal stress, and the increase
in diameter of this pipe. Use 0.25 for Poisson’s ratio.
function HoopStress(p,D,t,E,v){
/*hoop stress
s = pD/2t
longitudinal stress
s'= pD/4t
increase in cyl diameter
delD = D(s-vs')/E */
var s = p<*>D</>(2<*>t)
var sdash = p<*>D</>(4<*>t)
var delD = D<*>(s<->v<*>sdash)</>E
return ["s=" s;"sdash=" sdash;"delD=" delD<>inch]
}
p = 180(lb/sqin) // radial pressure
D = 5(ft) // internal diameter
t = (3/8)<>(inch) // wall thickness
E = 30e+6(lb/sqin) // modulus of elasticity for steel
v = 0.25 //poison's ratio
HoopStress(p,D,t,E,v)
Result:
s = 14400lb.sqin-1
sdash = 7200lb.sqin-1
delD = 0.0252inch
ExampleS3: Civil Engineering
A 1/2-in. (12.7-mm) diameter Copperweld bar consists of a steel core 3/8 in. (9.53 mm) indiameter and a copper skin 1/16 in. (1.6 mm) thick. What is the elongation of a 1-ft (0.3-m) length of this bar, and what is the internal force between the steel and copper arising from a temperature rise of 80°F (44.4°C)? Use the following values for thermal expansion coefficients: cs = 6.5*106 and cc = 9.0*106 , where the subscripts s and c refer to steel and copper, respectively. Also, Ec = 15*106 lb/sq.in. (1.03*108 kPa).
dc = 12.7(mm) // diameter of copperweld
ds = (3/8)<>(inch) // diameter of steel core
dcs = (1/16)<>(inch) // diameter of copper skin
Es = 30e+6(lbf/in2) // modulus of elasticity for steel
Ec = 1.03e+11(Pa) // modulus of elasticity for copper
cs = 6.5e-6(diffF-1) // coefficient of thermal expansion steel
cc = 9e-6(diffF-1) // coefficient of thermal expansion copper
L = 1(ft) // original length
delT = 44.4(diffC) // increase in temperature
//cross-sectional area
A = π<*>(dc)^2</>4
As = π<*>(ds)^2</>4
Ac = A<->As
//coeff of expansion
//c = ((As<*>Es<*>cs)<+>(Ac<*>Ec<*>cc))</>(As<*>Es<+>Ac<*>Ec)
a = (As<*>Es<*>cs)
b = (Ac<*>Ec<*>cc)<>(lbf.diffF-1)
d = (As<*>Es<+>Ac<*>Ec)
c = (a<+>b)</>d
//thermal expansion
delL = c<*>L<*>delT
//expansion w.o restraint
delLc = cc<*>L<*>delT
delLcs = delLc<->delL
delLs= cs<*>L<*>delT
delLsc = delL<->delLs
//restraining force
P1 = Ac<*>Ec<*>delLcs</>L
P2 = As<*>Es<*>delLsc</>L
function InternalForce(dc,ds,dcs,L,Es,Ec,cs,cc,delT){
//cross-sectional area
var A = π<*>(dc)^2</>4
var As = π<*>(ds)^2</>4
var Ac = A<->As
//coeff of expansion
//c = ((As<*>Es<*>cs)<+>(Ac<*>Ec<*>cc))</>(As<*>Es<+>Ac<*>Ec)
var a = (As<*>Es<*>cs)
var b = (Ac<*>Ec<*>cc)<>(lbf.diffF-1)
var d = (As<*>Es<+>Ac<*>Ec)
var c = (a<+>b)</>d
//thermal expansion
var delL = c<*>L<*>delT
//expansion w.o restraint
var delLc = cc<*>L<*>delT
var delLcs = delLc<->delL
var delLs= cs<*>L<*>delT
var delLsc = delL<->delLs
//restraining force
var P1 = Ac<*>Ec<*>delLcs</>L
var P2 = As<*>Es<*>delLsc</>L
return ["P1=" P1; "P2 =" P2]
}
dc = 12.7(mm) // diameter of copperweld
ds = (3/8)<>(inch) // diameter of steel core
dcs = (1/16)<>(inch) // diameter of copper skin
Es = 30e+6(lbf/in2) // modulus of elasticity for steel
Ec = 1.03e+11(Pa) // modulus of elasticity for copper
cs = 6.5e-6(diffF-1) // coefficient of thermal expansion steel
cc = 9e-6(diffF-1) // coefficient of thermal expansion copper
L = 1(ft) // original length
delT = 44.4(diffC) // increase in temperature
InternalForce(dc,ds,dcs,L,Es,Ec,cs,cc,delT)
Result:
P1= 184.81887968319361lbf
P2 = 184.81901805992197lbf
function CoefficientOfExpansion(dc,ds,dcs,Es,Ec,cs,cc){
//cross-sectional area
var A = π<*>(dc)^2</>4
var As = π<*>(ds)^2</>4
var Ac = A<->As
//coeff of expansion
//c = ((As<*>Es<*>cs)<+>(Ac<*>Ec<*>cc))</>(As<*>Es<+>Ac<*>Ec)
var a = (As<*>Es<*>cs)
var b = (Ac<*>Ec<*>cc)<>(lbf.diffF-1)
var d = (As<*>Es<+>Ac<*>Ec)
var c = (a<+>b)</>d
return[As,Ac,c]
}
dc = 12.7(mm)
ds = (3/8)<>(inch)
dcs = (1/16)<>(inch)
Es = 30e+6(lbf/in2)
Ec = 1.03e+11(Pa)
cs = 6.5e-6(diffF-1)
cc = 9e-6(diffF-1)
CoefficientOfExpansion(dc,ds,dcs,Es,Ec,cs,cc)
/*As= 0.11044661672776616inch2
Ac= 0.0859029241215959inch2
c= 0.000007197944655660324diffF-1*/
function InternalForce(L,delT,Es,Ec,cs,cc){
//thermal expansion
var delL = CoefficientOfExpansion(dc,ds,dcs,Es,Ec,cs,cc)[2]<*>L<*>delT
//expansion w.o restraint
var delLc = cc<*>L<*>delT
var delLcs = delLc<->delL
var delLs= cs<*>L<*>delT
var delLsc = delL<->delLs
//restraining force
var P1 = CoefficientOfExpansion(dc,ds,dcs,Es,Ec,cs,cc)[1]<*>Ec<*>delLcs</>L
var P2 = CoefficientOfExpansion(dc,ds,dcs,Es,Ec,cs,cc)[0]<*>Es<*>delLsc</>L
return ["P1=" P1;"P2=" P2]
}
L = 1(ft)
delT = 44.4(diffC)
Es = 30e+6(lbf/in2)
Ec = 1.03e+11(Pa)
cs = 6.5e-6(diffF-1)
cc = 9e-6(diffF-1)
InternalForce(L,delT,Es,Ec,cs,cc)
Result:
P1= 184.81887968319361lbf
P2= 184.81901805992197lbf
ExampleS4: Civil Engineering
M1 is a 4x4, F = 5500 lb (24,464 N), and Phi = 30°. The allowable compressive
stresses are P = 1200 lb/sq.in. (8274 kPa) and Q = 390 lb/sq.in. (2689.1 kPa). The
projection of M1 into M2 is restricted to a vertical distance of 2.5 in. (63.5 mm).
function NotchDesign(b,φ,P,Q,F,A){
//lengths
var AB = b</>DSIN(φ)
var AC = (b<*>DSIN(φ/2))</>DSIN(φ)
var BC = (b<*>DCOS(φ/2))</>DSIN(φ)
//stresses f1 and f2
var f1 = (F<*>DSIN(φ))</>(A<*>DTAN(φ/2))
var f2 = (F<*>DSIN(φ)<*>DTAN(φ/2))</>(A)
//allowable stresses
var N1 = P<*>Q</>((P<*>(DSIN(φ/2))^2)<+>Q<*>(DCOS(φ/2))^2)
var N2 = P<*>Q</>((P<*>(DCOS(φ/2))^2)<+>Q<*>(DSIN(φ/2))^2)
return["AC=" AC;"BC=" BC;"f1=" f1<>(lbf/sqin);"f2=" f2<>(lbf/sqin);"N1=" N1<>Pa;"N2=" N2<>Pa]
}
b = 3.625(inch) // length
φ = 30(deg) // angle
P = 1200(lbf/sqin) // allowable compressive stress
Q = 2689.1e+3(Pa) // allowable compressive stress
F = 24464(N) // force
A = 13.1(sqin) // area
NotchDesign(b,φ,P,Q,F,A)
Result:
AC= 1.8764380769932756inch
BC= 7.002962240595746inch
f1= 783.4067480901655lbf.sqin-1
f2= 56.2460738932418lbf.sqin-1
N1= 7263269.6857909495Pa
N2= 2816446.5788098425Pa
ExampleS5: Engineering Economics
The QRS Corp. purchased capital equipment for use in a 5-year venture. The equipment
cost $240,000 and had zero salvage value. If the income tax rate was 52 percent and the
annual income from the investment was $83,000 before taxes and depreciation, what was
the average rate of earnings if the profits after taxes were invested in tax-free bonds yielding 3 percent? Compare the results obtained when depreciation is computed by the straight-line method.
function RateOfEarnings(EC,n,GI,r,i){
//taxable income
var DC = EC</>n
var TI = GI<->DC
//annual tax payment
var TP = r<*>TI
//net income
var NI = GI<->TP
//S = R(USCA)
//SPCA = (1<+>i)^n
var s = NI<*>(5.309)
var sp = s</>EC
var m = [(sp^0.2)<->1]<*>100
return m
}
EC = 240000(USD) // equipment cost
n = 5 // no. of years
GI = 83000 // gross income
r = 0.52 // income tax rate
i = 0.03 // tax free bonds yeild
RateOfEarnings(EC,n,GI,r,i)
Result:
m= 7.467042666032353
ExampleS6: Fluid Mechanics
A steel pipe is discharging 10 ft3/s (283.1 L/s) of water. At section 1, the pipe diameter is 12 in. (304.8 mm), the pressure is 18 lb/sq.in. (124.11 kPa), and the elevation is 140 ft(42.67 m). At section 2, farther downstream, the pipe diameter is 8 in. (203.2 mm), and the elevation is 106 ft (32.31 m). If there is a head loss of 9 ft (2.74 m) between these sections due to pipe friction, what is the pressure at section 2?
function BernoullisPressure(d1,d2,p1,z1,z2,q1,q2,hf,w,g){
var a1 = π<*>(d1)^2</>4
var a2 = π<*>(d2)^2</>4
var v1 = q1</>a1
var v2 = q2</>a2
var p2 = (((v1^2<->v2^2)</>(2<*>g)<+>z1<->z2<->hf)<*>w)<+>p1
return p2<>(lbf/in2)
}
d1 = 12(inch) // pipe1 diameter
d2 = 203.2(mm) // pipe2 diameter
p1 = 124.11e+3(Pa) // pressure at 1
z1 = 140(ft) // height at 1
z2 = 32.31(m) // height at 2
q1 = 283.1(L/s) // water discharge at 1
q2 = 10(ft3/s) // water discharge at 2
hf = 9(ft) // head loss
w = (62.4/(144*12))<>(lbf/inch3) // specific weight
g = 32.2(ft/s2) // gravitational force
BernoullisPressure(d1,d2,p1,z1,z2,q1,q2,hf,w,g)
Result:
p2= 24.400241276116066lbf.in-2
function BernoullisPressure(d1,d2,p1,z1,z2,q1,q2,hf,w,g){
var a1 = π<*>(d1)^2</>4
var a2 = π<*>(d2)^2</>4
var v1 = q1</>a1
var v2 = q2</>a2
var p2 = (((v1^2<->v2^2)</>(2<*>g)<+>z1<->z2<->hf)<*>w)<+>p1
return p2<>(lbf/in2)
}
BernoullisPressure ⩨;
d1 = (1..5)<>(inch) // pipe1 diameter
d2 = 203.2(mm) // pipe2 diameter
p1 = 124.11e+3(Pa) // pressure at 1
z1 = 140(ft) // height at 1
z2 = 32.31(m) // height at 2
q1 = 283.1(L/s) // water discharge at 1
q2 = 90<>(ft3/s) // water discharge at 2
hf = 9(ft) // head loss
w = (62.4/(144*12))<>(lbf/inch3) // specific weight
g = 32.2(ft/s2) // gravitational force
BernoullisPressure(d1,d2,p1,z1,z2,q1,q2,hf,w,g)
Result:
d1 d2 p1 z1 z2 q1 q2 hf w g p2
1inch 203.2mm 124110Pa 140ft 32.31m 283.1L.s-1 90ft3.s-1 9ft 0.03611111111111111lbf.inch-3 32.2ft.s-2 22190.006973772463lbf.in-2
2inch 203.2mm 124110Pa 140ft 32.31m 283.1L.s-1 90ft3.s-1 9ft 0.03611111111111111lbf.inch-3 32.2ft.s-2 994.5545670303857lbf.in-2
3inch 203.2mm 124110Pa 140ft 32.31m 283.1L.s-1 90ft3.s-1 9ft 0.03611111111111111lbf.inch-3 32.2ft.s-2 -139.3585246883264lbf.in-2
4inch 203.2mm 124110Pa 140ft 32.31m 283.1L.s-1 90ft3.s-1 9ft 0.03611111111111111lbf.inch-3 32.2ft.s-2 -330.16120839099426lbf.in-2
5inch 203.2mm 124110Pa 140ft 32.31m 283.1L.s-1 90ft3.s-1 9ft 0.03611111111111111lbf.inch-3 32.2ft.s-2 -382.30202131157984lbf.in-2
Unit Conversion Examples
ExampleP1:
An oil with density(ρ) of 999.834907696(kg/m3) flows through a pipe of length(L) 30.48m and diameter(D) 0.1524m with a nominal velocity(U) of 0.94488(m/s). Pressure drop(dP) in the pipe is 1723.68925(Pa). Find the friction coeffecient.
/*solution with SI units*/
FrictionFactor=(dP,L,D,ρ,U)=>[dP,L,D,ρ,U,(dP</>((L</>D)<*>(0.5<*>ρ<*>(U<^>2))))][5];
dP = 1723.68925(Pa) // pressure drop
L = 30.48m // pipe length
D = 0.1524m // pipe diameter
ρ = 999.834907696(kg/m3) // density
U = 0.94488(m/s) // nominal velocity
FrictionFactor(dP,L,D,ρ,U)
//0.019309781729077106
/*solution with SI and Imperial units*/
FrictionFactor=(dP,L,D,ρ,U)=>[dP,L,D,ρ,U,(dP</>((L</>D)<*>(0.5<*>ρ<*>(U<^>2))))][5];
dP = 1723.68925(Pa)
L = 100ft
D = 0.1524m
ρ = 1.94(slug/ft3)
U = 0.94488(m/s)
FrictionFactor(dP,L,D,ρ,U)
//0.019309781729077106
/*solution with imperial units*/
FrictionFactor=(dP,L,D,ρ,U)=>[dP,L,D,ρ,U,(dP</>((L</>D)<*>(0.5<*>ρ<*>U^2)))][5];
// note the arrow notation function here. Helps with shading the variables from global scope etc. compared to FrictionFactor:=[dP,L,D,ρ,U,(dP</>((L</>D)<*>(0.5<*>ρ<*>U^2)))][5] notation.
dP = 0.25(psi)
L = 100ft
D = 6inch
ρ = 1.94(slug/ft3)
U = 3.1(ft/s)
FrictionFactor(dP,L,D,ρ,U)
//0.019309781729077106
ExampleP2:
Find the Reynolds number if a fluid of viscosity 0.4 N/m2 and relative density of 900 Kg/m3 through a 20 mm pipe with a Velocity of 2.5 m/s?
/*solution in S.I. units*/
ReynoldsNumber:=[v,d,rho,mu,v<*>d<*>rho</>mu];
rho = 900(kg/m3) // density
v = 2.5(m/s) // velocity
mu = 0.4(N.s/m2) // viscosity
d = 20(mm) // diameter
ReynoldsNumber(v,d,rho,mu)
//112.5
/*solution with SI and Imperial units*/
ReynoldsNumber:=[v,d,rho,mu,v<*>d<*>rho</>mu];
rho = 56.185(lb/ft3)
v = 2.5(m/s)
mu = 0.4(N.s/m2)<>(cP)
d = 2(cm)
rn=ReynoldsNumber(v,d,rho,mu);
rn<>_ ; // _ is used as an indicator to reduce the final units to minimal units, in this case unitless.
//112.5
/*solution in imperial units*/
ReynoldsNumber:=[v,d,rho,mu,v<*>d<*>rho</>mu];
rho = 56.185(lb/ft3)
v = 8.20209(ft/s)
mu = 0.00835(lbf.s/ft2)
d = 0.0656(ft)
ReynoldsNumber(v,d,rho,mu)
//112.5
ExampleP3:
A slab that is made from copper has a length of 10 cm and an area that is 90 cm2. The front side is heated to 150 oC and the back to 10 oC. Find the heat flux q and the heat flow rate Q in the slab once steady state is reached. Assume dT/dx is constant.
/*solution in S.I units*/
FouriersLaw=(k,a,delt,delx)=>[k,a,delt,delx,(-1)<*>(k)<*>a<*>delt</>delx];
k = 401("W.m-1.diffK-1") //
a = 90(cm2) // area
t1 = 10(degC)<>(degK) // temperature1
t2 = 150(degC)<>(degK) // temperature2
delt = t1<->t2 // diff.of temperature
delx = 0.1(m) // diff.in length
FouriersLaw(k,a,delt,delx)
//5052.59999W.diffK-1 .K
//In the solution above diffK and K can be cancelled out.
//Solution = 5052.59999W
/*solution with SI and Imperial units*/
FouriersLaw=(k,a,delt,delx)=>[k,a,delt,delx,(-1)<*>(k)<*>a<*>delt</>delx];
k = 417.0483("BTUIT*h-1*ft-1*diffK-1")
a = 90(cm2)
t1 = 10(degC)<>(degK)
t2 = 150(degC)<>(degK)
delt = t1<->t2
delx = 0.1(m)
FouriersLaw(k,a,delt,delx)
//417.0483BTUIT.h-1.ft-1.diffK-1 90cm2 -140K 0.1m 17240.18562992126BTUIT.diffK-1.h-1.K
/*solution in imperial units*/
FouriersLaw=(k,a,delt,delx)=>[k,a,delt,delx,(-1)<*>(k)<*>a<*>delt</>delx];
k = 417.0483("BTUIT*h-1*ft-1*diffK-1")
a = 0.096875(ft2)
t1 = 10(degC)<>(degK)
t2 = 150(degC)<>(degK)
delt = t1<->t2
delx = 0.32808(ft)
FouriersLaw(k,a,delt,delx)
//17240.360792337236BTUIT.diffK-1 .h-1 .K = 5052.599W
ExampleP4:
A body is projected with a velocity of 20 ms-1 at 50deg to the horizontal. Find Maximum height reached.
/*solution in S.I units*/
MaximumHeight:=[v0,a,g,v0<^>2<*>(DSIN(a))<^>2</>(2<*>g)];
v0 = 20(m/s)
a = 50
g = 9.8(m/s2)
MaximumHeight(v0,a,g)
//11.97600181292786m
/*solution in imperial units*/
MaximumHeight:=[v0,a,g,v0<^>2<*>(DSIN(a))<^>2</>(2<*>g)];
v0 = 65.6167(ft/s)
a = 50
g = 23149.624(ipm/s)
MaximumHeight(v0,a,g)
//0.054571107280907624ft2.ipm-1.s-1 <> 11.97600181292786m
/*solution with SI and Imperial units*/
MaximumHeight:=[v0,a,g,v0<^>2<*>(DSIN(a))<^>2</>(2<*>g)];
v0 = 20(m/s)
a = 50
g = 23149.624(ipm/s)
MaximumHeight(v0,a,g)
//0.054571107280907624ft2.ipm-1.s-1<> 11.97600181292786m
ExampleP5:
A sound source with a frequency of 790Hz moves away from a stationary observer at a rate of 15m/s. What
frequency does the observer hear? The speed of sound is 340m/s.
/*solution in S.I units*/
DopplerEffect:=[v,vl,vs,fs,(v<+>vl)<*>fs</>(v<+>vs)]
v = 340(m/s)
vl = 0(m/s)
vs = 15(m/s)
fs = 790(Hz)
DopplerEffect(v,vl,vs,fs)
//756.6197183098592Hz
/*solution with SI and Imperial units*/
DopplerEffect:=[v,vl,vs,fs,(v<+>vl)<*>fs</>(v<+>vs)]
v = 1115.485(ft/s)
vl = 0(m/s)
vs = 29.1576(kn)
fs = 790(Hz)
DopplerEffect(v,vl,vs,fs)<>Hz
//389.2388081250533Hz.kn-1 .m.s-1 <> 756.6197183098592Hz
/*solution in imperial units*/
DopplerEffect:=[v,vl,vs,fs,(v<+>vl)<*>fs</>(v<+>vs)]
v = 1115.485(ft/s)
vl = 0(ft/s)
vs = 49.21248(ft/s)
DopplerEffect(v,vl,vs,fs)
//756.6197790691537Hz
ExampleP6:
Circular Segment Area
CircularSegmentArea:=[r,α,(r^2<*>(RAD(α)<->DSIN(α))</>2)];
//φ = 2<*>(ACOS((r<->2r)</>r))
//r-radius
//α-Angle
r = 2m
α = 30(deg)
CircularSegmentArea(r,α)
//0.04719755119659774m2.㎭
CircularSegmentArea:=[r,α,(r^2<*>(RAD(α)<->DSIN(α))</>2)][2];
r = 2(m)
α = 33.3333(grad)<>deg
CircularSegmentArea(r,α)
//0.04719740850564924m2.㎭
CircularSegmentArea:=[r,α,(r^2<*>(RAD(α)<->DSIN(α))</>2)][2];
r = 2(m)
α = 33.3333(grad)<>rad //Changed to "rad" for the function to work.
CircularSegmentArea(r,α)
//0.04719755119659774m2.㎭
ExampleP7:
Coulombs Law
CoulombsLaw:=[q1,q2,k,r,q1<*>q2<*>k</>r<^>2];
q1 = 1e-6(C)
q2 = 1e-6(C)
r = 1(cm)
k = 8.99e9(N.m2/C2)
CoulombsLaw(q1,q2,k,r)
//89.89999999999999kg.m.s-2
CoulombsLaw:=[q1,q2,k,r,q1<*>q2<*>k</>r<^>2];
q1 = 1.0364268992774003e-11(F)
q2 = 1.0364268992774003e-11(F)
r = 1(cm)
k = 8.99e9(N.m2/C2)
CoulombsLaw(q1,q2,k,r)
//89.89999999999999kg.m.s-2
CoulombsLaw:=[q1,q2,k,r,q1<*>q2<*>k</>r<^>2];
q1 = 1.0364268992774003e-11(F)
q2 = 1.0364268992774003e-11(F)
r = 0.032808(ft)
k = 8.99e9(N.m2/C2)
CoulombsLaw(q1,q2,k,r)
//89.90218640788kg.m.s-2