Manuals/calci/NORMDIST

From ZCubes Wiki
Jump to navigation Jump to search
NORMDIST (Number,Mean,StandardDeviation,Cumulative,accuracy)


  • is the value.
  • is the mean.
  • is the standard deviation
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Cumulative} is the logical value like TRUE or FALSE.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Accuracy} is correct decimal places for the result.
    • NORMDIST(),returns the normal cumulative distribution.

Description

  • This function gives the Normal Distribution for the particular Mean and Standard Deviation.
  • Normal Distribution is the function that represents the distribution of many random variables as a symmetrical bell-shaped graph.
  • This distribution is the Continuous Probability Distribution.It is also called Gaussian Distribution.
  • In Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle NORMDIST (Number,Mean,StandardDeviation,Cumulative,accuracy)} ), Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Number} is the value of the function, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Mean} is the Arithmetic Mean of the distribution, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle StandardDeviation} is the Standard Deviation of the distribution and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Cumulative} is the Logical Value that indicating the form of the function.
  • Suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Cumulative} is TRUE, this function gives the Cumulative Distribution, and it is FALSE, this function gives the Probability Mass Function.
  • The equation for the Normal Distribution is:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle  f(x,\mu,\sigma)=\frac{1}{\sigma \sqrt{2\pi}}.e^{-\left({\tfrac{(x-\mu)^2}{2\sigma^2}}\right)}}

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} is the Mean of the distribution, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} is the Standard Deviation of the distribution.

  • In this formula, suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} = 0 and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} = 1, then the distribution is called the Standard Normal Distribution or the Unit Normal Distribution.
 This function will return the result as error when any one of the argument is non-numeric and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle StandardDeviation<=0}
.
  • when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Cumulative} is TRUE , this formula is the integral from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\infty} to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Number} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Cumulative} is FALSE , we can use the same formula.

Examples

  1. =NORMDIST(37,29,2.1,FALSE) = 0.000134075
  2. =NORMDIST(37,29,2.1,TRUE) = 0.99993041384
  3. =NORMDIST(10.75,17.4,3.2,TRUE) = 0.01884908749
  4. =NORMDIST(10.75,17.4,3.2,FALSE) = 0.014387563

Related Videos

NORMDIST

See Also

References

Normal distribution