Manuals/calci/REDHEFFER

From ZCubes Wiki
Jump to navigation Jump to search
MATRIX("REDHEFFER",order)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle order} is the size of the Redheffer matrix.

Description

  • This function gives the redheffer matrix of order 3.
  • A Redheffer matrix is a square (0,1) -matrix with elements Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_(ij)} equal to 1 if j=1 or i/j (i divides j), and 0 otherwise. *For n=1, 2, ..., The first few Redheffer matrices are

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} 1 \\ \end{bmatrix}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ \end{bmatrix}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ \end{bmatrix}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ \end{bmatrix}}

  • The determinant of the n×n Redheffer matrix is equal to the Mertens function M(n).

Examples

  • 1.MATRIX("redheffer") =1
  • 2.MATRIX("redheffer",3)
1 1 1
1 1 0
1 0 1
  • 3.MATRIX("redheffer",6)
1 1 1 1 1 1
1 1 0 1 0 1
1 0 1 0 0 1
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

See Also

References