Manuals/calci/TRIDIAGONAL

From ZCubes Wiki
Jump to navigation Jump to search
MATRIX("TRIDIAGONAL",order)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle order} is the size of the Tridiagonal matrix.

Description

  • This function returns the matrix with the property of tridiagonal.
  • A square matrix with nonzero elements only on the diagonal and slots horizontally or vertically adjacent the diagonal.
  • i.e., along the subdiagonal and superdiagonal.
  • So a tridiagonal matrix is a matrix that has nonzero elements only on the main diagonal, the first diagonal below this, and the first diagonal above the main diagonal.
  • A tridiagonal is of the form:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{vmatrix} a_{11} & a_{12} & 0 & 0 & \cdots & \cdots & 0 & 0 \\ a_{21} & a_{22} & a_{23} &\cdots & \cdots & \cdots & 0 & 0 \\ 0 & a_{32} & a_{33} & \cdots & \cdots &\ddots & a_{n-2,n-1} & 0 \\ \vdots &\vdots &\ddots &\ddots & \ddots & \ddots & a_{n-1,n-1} & a_{n-1,n}\\ 0 & 0 & \cdots &\cdots &\cdots & \cdots & a_{n,n-1} & a_{nn}\\ \end{vmatrix}}

  • A general tridiagonal matrix is not necessarily symmetric or Hermitian,but tridiagonal matrix is a matrix that is both upper and lower Hessenberg matrix.
  • In Calci, MATRIX("tridiagonal") gives the tridiagonal matirx of order 3.
  • Users can change the order of the matrix.


Examples

  • MATRIX("tridiagonal") =18
  • MATRIX("tridiagonal",3)
59 58 0
-93 3 21
0 -24 90
  • MATRIX("tridiagonal",6)
23 9 0 0 0 0
-6 91 -75 0 0 0
0 32 -25 -11 0 0
0 0 -44 42 -1 0
0 0 0 61 -26 86
0 0 0 0 -50 -92

Related Videos

Tridiagonal Matix

See Also

References