Manuals/calci/TTESTTWOSAMPLESEQUALVARIANCES

From ZCubes Wiki
Jump to navigation Jump to search
TTESTTWOSAMPLESEQUALVARIANCES (Array1,Array2,HypothesizedMeanDifference,Alpha,NewTableFlag)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Array1 } and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Array2 } are set of values.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle HypothesizedMeanDifference } is the Hypothesized Mean Difference.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Alpha } is the significance level.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle NewTableFlag } is either 0 or 1.
    • TTESTTWOSAMPLESEQUALVARIANCES(), determines whether two sample means are equal.

Description

  • This function calculating the two Sample for equal variances determines whether two sample means are equal.
  • We can use this test when both:
  • 1.The two sample sizes are equal;
  • 2.It can be assumed that the two distributions have the same variance.
  • In , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Array1 } and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Array2 } are two arrays of sample values. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle HypothesizedMeanDifference } is the Hypothesized Mean Difference .
  • Suppose HypothesizedMeanDifference=0 which indicates that sample means are hypothesized to be equal.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Alpha } is the significance level which ranges from 0 to 1.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle NewTableFlag } is either 0 or 1.
  • "1" is indicating the result will display in new worksheet.Suppose we are omitted the NewTableFlag value it will consider the value as "0".
  • The t statistic of this function calculated by:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t = \frac{\bar{x_1}-\bar{x_2}}{s_{x1}.s_{x2}.\sqrt{\frac{2}{n}}}}

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_{x1}.s_{x2} = \sqrt{\frac{1}{2}(s_{x1}^2+s_{x2}^2)}}

  • Here Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_{x1}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_{x2}} are unbiased estimators of the variances of two samples.Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle s_{x1}.s_{x2}} is the grand standard deviation data 1 and data2 and n is the data points of two data set.
  • This function will give the result as error when
  1.any one of the argument is non-numeric.
  2.Alpha>1
  3.Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Array1 }
 and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle  Array2 }
 are having different number of data points.

Examples

Spreadsheet
A B C D E F
1 10 15 18 27 12 34
2 17 20 25 39 9 14
  1. =TTESTTWOSAMPLESEQUALVARIANCES(A1:F1,A2:F2,2,0.5,0)
t-Test: Two-Sample Assuming Equal Variances
Variable 1 Variable 2
Mean 19.333333333333332 20.666666666666668
Variance 87.06666666666666 109.86666666666667
Observations 6 6
Pooled Variance 98.46666666666667
Hypothesized Mean Difference 2
Degree Of Freedom 10
T- Statistics -0.5818281835787091
P(T<=t) One-tail 0.28678199670723614
T Critical One-Tail 0
P(T<=t) Two-tail 0.5735639934144723
T Critical Two-Tail 0.6998120613365443

Related Videos

T Test two sample Equal variances

See Also

References