Manuals/calci/WEIBULL
Jump to navigation
Jump to search
WEIBULL (Number,Alpha,Beta,Cumulative)
- is the value of the function.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Alpha } and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Beta } are the parameter of the distribution.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Cumulative}
is the logical value.
- WEIBULL(),returns the Weibull distribution.
Description
- This function gives the value of the weibull distribution with 2-parameters.
- It is a continuous probability distribution.
- Weibull distribution also called Rosin Rammler distribution.
- It is used to model the lifetime of technical devices and is used to describe the particle size distribution of particles generated by grinding, milling and crushing operations.
- This distribution is closely related to the lognormal distribution.
- In Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle WEIBULL(Number,Alpha,Beta,Cumulative)} ,Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Number } is the value to evaluate the function.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Alpha } is the shape parameter of the distribution.Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Beta } is the scale parameter of the distribution.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Cumulative} is the logical value which determines the form of the distribution.
- When Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Cumulative} is TRUE, this function gives the value of the cumulative distribution. When is FALSE, then this function gives the value of the probability density function.
- When we are not omitting the value of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Cumulative} , then it consider as FALSE.
- Weibull distribution is of two type :3-parameter weibull distribution and 2-parameter weibull distribution.
- This function gives the value of 2-parameter weibull distribution by setting the third parameter (location parameter) is zero.
- Also if alpha<1,then the failure rate of the device decreases over time.
- If alpha=1, then the failure rate of the device is constant over time.
- If alpha>1, then the failure rate of the device increases over time.
- The equation for cumulative distribution function is: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x,\alpha,\beta)} =Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-e^-{(\frac{x}{\beta})}^\alpha} .
- The equation for probability density function is:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,\alpha,\beta) = \frac{\alpha}{\beta^\alpha}.x^{\alpha-1}.e^-{(\frac{x}{\beta})}^\alpha.}
- When alpha =1, then this function gives the exponential with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda=\frac{1}{\beta}} .
- This function gives the result as error when
1. Any one of the argument is non-numeric.
2. Number is negative.
3. AlphaFailed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \le 0}
or Beta Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \le 0}
Examples
- =WEIBULL(202,60,81,TRUE) = 1
- =WEIBULL(202,60,81,FALSE) = 0
- =WEIBULL(160,80,170,TRUE) = 0.00779805060
- =WEIBULL(160,80,170,FALSE) = 0.0038837823333
- = WEIBULL(10.5,2.1,5.3,TRUE) = 0.9850433821261
- =WEIBULL(10.5,2.1,5.3,FALSE) = 0.0125713406729
Related Videos
See Also
References