Manuals/calci/hadamard
Jump to navigation
Jump to search
HADAMARD(Number)
- is the order of the hadamard matrix.
Description
- This function gives the matrix satisfying the property of Hadamard.
- A Hadamard matrix is the square matrix with the entries of 1 and -1.
- Also the rows of that matrix are orthogonal.
- So H be a Hadamard matrix of order 2n.
- The transpose of H is closely related to its inverse.
- The equivalent definition for hadamard matrix is:
where is the n × n identity matrix and is the transpose of H.
- So the possible order of the matrix is 1,2 or positive multiple of 4.
- The few examples of hadamard matrices are:
Examples
1. HADAMARD(1) = 1
2. HADAMARD(3)
1 | 1 | 1 | 1 |
1 | -1 | 1 | -1 |
1 | 1 | -1 | -1 |
1 | -1 | -1 | 1 |
3. HADAMARD(4)
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 |
1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 |
1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 |
1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 |
1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 |
1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 |
1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 |
Related Videos
See Also
References