Difference between revisions of "Manuals/calci/BESSELI"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELI'''</font></font></font><font color="#484...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELI'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''v'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">,</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''o'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
+
<div style="font-size:30px">'''BESSELI(x,n)'''</div><br/>
 +
*where 'x' is the value at which to evaluate the function and 'n' is the integer which is the order of the Bessel function
 +
==Description==
 +
*This function gives the value of the modified Bessel function.
 +
*Bessel functions is also called cylinder functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
 +
*Bessel's Differential Equation is defined as: x^2 (d^2 y/dx^2) + x(dy/dx) + (x^2 - α^2)y =0
 +
where α is the arbitary complex number.
 +
*But in most of the cases α is the non-negative real number.
 +
*The solutions of this equation are called Bessel Functions of order n.
 +
*Bessel functions of the first kind, denoted as Jn(x).
 +
*The n-th order modified Bessel function of the variable x is: In(x)=i^-nJn(ix) ,where Jn(x)=summation(k=0 to infinity){(-1)^k(x/2)^n+2k}/k!gamma(n+k+1).
 +
*This function will give the result as error when 1.x or n is non numeric2. n<0, because n is the order of the function.
 +
==Examples==
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Where 'v' is the value at which to evaluate the function and 'o' is the order of the Bessel function. </font></font></font>
+
#BESSELJ(2,3)=0.12894325(EXCEL)Jn(x)
 +
            =0.10728467204(calci)J1(x)
 +
            0.5767248079(Actual)J1(x)
 +
#BESSELJ(7,2)=-0.301417224(EXCEL)Jn(x)
 +
            =NAN(calci)
 +
            =-0.0046828257(Actual)J1(x)
 +
#BESSELJ(5,1)=-0.327579139(EXCEL)Jn(x)
 +
            =NAN(calci)
  
</div>
+
==See Also==
----
+
*[[Manuals/calci/BESSELI  | BESSELI ]]
<div id="1SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">This function returns the modified Bessel function, which is equivalent to the Bessel function evaluated for purely imaginary arguments.</font></font></font></div>
+
*[[Manuals/calci/BESSELK  | BESSELK ]]
----
+
*[[Manuals/calci/BESSELY  | BESSELY ]]
<div id="7SpaceContent" class="zcontent" align="left">
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">BESSELI returns the error value when 'v' and 'o' are nonnumeric. </font></font></font>
+
==References==
 
+
[http://en.wikipedia.org/wiki/Absolute_value| Absolute_value]
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'0' should be grater than 1</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">The o-th order modified Bessel function of the variable 'v' is: </font></font></font>
 
 
 
<font color="#484848" face="Arial"></font>
 
 
 
<font color="#484848" face="Arial"></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where v = x and o = n</font></font></font>
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
BESSELI
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">  <font color="#000000"><font face="Arial, sans-serif"><font size="2">Lets see an example,</font></font></font>
 
 
 
[javascript:ToggleDiv('divExpCollAsst_4') <font color="#000000"><font face="Arial, sans-serif"><font size="2">BASSELI(v,o)</font></font></font>]
 
 
 
<font face="Tahoma, sans-serif"><font size="1">[javascript:ToggleDiv('divExpCollAsst_4') <font color="#000000"><font face="Arial, sans-serif"><font size="2"><nowiki>=BESSELI(2.5, 1) is 2.5167</nowiki></font></font></font>]</font></font>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| class="  " | Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 2.5
 
| class="sshl_f" | 2.516716
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 1
 
| class="SelectTD SelectTD" |
 
|
 
|
 
|- class="odd"
 
| Row3
 
| class="                                      sshl_f                        " |
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
|
 
|
 
|
 
| class="  " |
 
|- class="odd"
 
| class=" " | Row5
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row6
 
|
 
|
 
|
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="9SpaceContent" class="zcontent" align="left"><div>[[Image:23.JPG|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/23.JPG]]</div></div>
 
----
 

Revision as of 00:19, 29 November 2013

BESSELI(x,n)


  • where 'x' is the value at which to evaluate the function and 'n' is the integer which is the order of the Bessel function

Description

  • This function gives the value of the modified Bessel function.
  • Bessel functions is also called cylinder functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
  • Bessel's Differential Equation is defined as: x^2 (d^2 y/dx^2) + x(dy/dx) + (x^2 - α^2)y =0

where α is the arbitary complex number.

  • But in most of the cases α is the non-negative real number.
  • The solutions of this equation are called Bessel Functions of order n.
  • Bessel functions of the first kind, denoted as Jn(x).
  • The n-th order modified Bessel function of the variable x is: In(x)=i^-nJn(ix) ,where Jn(x)=summation(k=0 to infinity){(-1)^k(x/2)^n+2k}/k!gamma(n+k+1).
  • This function will give the result as error when 1.x or n is non numeric2. n<0, because n is the order of the function.

Examples

  1. BESSELJ(2,3)=0.12894325(EXCEL)Jn(x)
            =0.10728467204(calci)J1(x)
            0.5767248079(Actual)J1(x)
  1. BESSELJ(7,2)=-0.301417224(EXCEL)Jn(x)
            =NAN(calci)
            =-0.0046828257(Actual)J1(x)
  1. BESSELJ(5,1)=-0.327579139(EXCEL)Jn(x)
            =NAN(calci)

See Also

References

Absolute_value