Difference between revisions of "Manuals/calci/BESSELJ"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELJ'''</font></font></font><font color="#484...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELJ'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''v'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">, </font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''o'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
+
<div style="font-size:30px">'''BESSELJ(x,n)'''</div><br/>
 +
*where 'x' is the value at which to evaluate the function and n is the integer which is the order of the Bessel function
 +
==Description==
 +
*This function gives the value of the modified Bessel function.
 +
*Bessel functions is also called cylinder functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
 +
*Bessel's Differential Equation is defined as: x^2 (d^2 y/dx^2) + x(dy/dx) + (x^2 - α^2)y =0
 +
where α is the arbitary complex number.
 +
*But in most of the cases α is the non-negative real number.
 +
*The solutions of this equation are called Bessel Functions of order n.
 +
*Bessel functions of the first kind, denoted as Jn(x), and
 +
*The Bessel function of the first kind of order  can be expressed as:Jn(x)=summation(k=0 to infinity){(-1)^k(x/2)^n+2k}/k!gamma(n+k+1), where gamma(n+k+1)=(n+k)! or                                                                      *Integral 0 to infinity  x^(n+k).e^-x dx. is the gamma function.
 +
*This function will give the result as error when 1.x or n is non numeric 2. n<0, because n is the order of the function
 +
==Examples==
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Where 'v' is the value at which to evaluate the function and 'o' is the order of the Bessel function. </font></font></font>
+
#BESSELI(3,2)=2.245212431(Excel) this is the n th derivative(In(x))=3.9533702171(Calci)this is the 1st derivative(I1(x))
 +
#BESSELI(5,1)=24.33564185
 +
#BESSELI(6,0)=67.23440724(Excel)  I0(x)61.3419369373(CALCI) I1(x)
 +
#BESSELI(-2,1)=0.688948449(Excel) =-1.5906368573(CALCI)
 +
#BESSELI(2,-1)=NAN ,because n<0.
  
</div>
+
==See Also==
----
+
*[[Manuals/calci/BESSELI  | BESSELI ]]
<div id="1SpaceContent" class="zcontent" align="left">  <font color="#484848"><font face="Arial, sans-serif"><font size="2">This function returns the Bessel function.</font></font></font></div>
+
*[[Manuals/calci/BESSELK  | BESSELK ]]
----
+
*[[Manuals/calci/BESSELY  | BESSELY ]]
<div id="7SpaceContent" class="zcontent" align="left"> 
 
  
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">BESSELJ returns the error value, when 'v' and 'o' are nonnumeric.</font></font></font>
+
==References==
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">o should be grater than 1</font></font></font>
+
[http://en.wikipedia.org/wiki/Absolute_value| Absolute_value]
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">The o-th order Bessel function of the variable 'v' is: </font></font></font>
 
 
 
<font color="#484848" face="Arial"></font>
 
 
 
<font color="#484848" face="Arial"></font>
 
 
 
<font color="#484848" face="Arial"></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where:</font></font></font>
 
 
 
<font color="#484848" face="Arial"></font>
 
 
 
<font color="#484848" face="Arial"></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">is the Gamma function.</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where v = x and o = n</font></font></font>
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
BESSELJ
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELJ(v, o)'''</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELJ(C1R1,C2R2)'''</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''<nowiki>=BESSELJ(1.5, 2) is 0.2321</nowiki>'''</font></font></font>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| class="  " | Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 1.5
 
| class="sshl_f" | 0.232088
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 2
 
| class="SelectTD SelectTD" |
 
|
 
|
 
|- class="odd"
 
| Row3
 
| class="                                      sshl_f                      " |
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
|
 
|
 
|
 
| class="  " |
 
|- class="odd"
 
| class=" " | Row5
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row6
 
|
 
|
 
|
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="9SpaceContent" class="zcontent" align="left"><div>[[Image:22.JPG|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/22.JPG]]</div></div>
 
----
 
<div id="13SpaceContent" class="zcontent" align="left"><div>[[Image:21.JPG|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/21.JPG]]</div></div>
 
----
 

Revision as of 00:59, 29 November 2013

BESSELJ(x,n)


  • where 'x' is the value at which to evaluate the function and n is the integer which is the order of the Bessel function

Description

  • This function gives the value of the modified Bessel function.
  • Bessel functions is also called cylinder functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
  • Bessel's Differential Equation is defined as: x^2 (d^2 y/dx^2) + x(dy/dx) + (x^2 - α^2)y =0

where α is the arbitary complex number.

  • But in most of the cases α is the non-negative real number.
  • The solutions of this equation are called Bessel Functions of order n.
  • Bessel functions of the first kind, denoted as Jn(x), and
  • The Bessel function of the first kind of order can be expressed as:Jn(x)=summation(k=0 to infinity){(-1)^k(x/2)^n+2k}/k!gamma(n+k+1), where gamma(n+k+1)=(n+k)! or *Integral 0 to infinity x^(n+k).e^-x dx. is the gamma function.
  • This function will give the result as error when 1.x or n is non numeric 2. n<0, because n is the order of the function

Examples

  1. BESSELI(3,2)=2.245212431(Excel) this is the n th derivative(In(x))=3.9533702171(Calci)this is the 1st derivative(I1(x))
  2. BESSELI(5,1)=24.33564185
  3. BESSELI(6,0)=67.23440724(Excel) I0(x)61.3419369373(CALCI) I1(x)
  4. BESSELI(-2,1)=0.688948449(Excel) =-1.5906368573(CALCI)
  5. BESSELI(2,-1)=NAN ,because n<0.

See Also

References

Absolute_value