Difference between revisions of "Manuals/calci/BESSELI"

From ZCubes Wiki
Jump to navigation Jump to search
Line 5: Line 5:
 
*This function gives the value of the modified Bessel function.
 
*This function gives the value of the modified Bessel function.
 
*Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
 
*Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
*Bessel's Differential Equation is defined as: <math>x^2 \frac{d^2 y}{dx^2} + x\frac{dy}{dx} + (x^2 - \alpha^2)y =0</math>
+
*Bessel's Differential Equation is defined as: <math>x^2 \frac{d^2 y}{dx^2} + x\frac{dy}{dx} + (x^2 - \alpha^2)y =0</math> \sum_{n=0}^\infty
 
where <math>\alpha</math> is the arbitrary complex number.
 
where <math>\alpha</math> is the arbitrary complex number.
 
*But in most of the cases α is the non-negative real number.
 
*But in most of the cases α is the non-negative real number.
 
*The solutions of this equation are called Bessel Functions of order <math>n</math>.
 
*The solutions of this equation are called Bessel Functions of order <math>n</math>.
 
*Bessel functions of the first kind, denoted as <math>Jn(x)</math>.  
 
*Bessel functions of the first kind, denoted as <math>Jn(x)</math>.  
*The <math>n^th</math> order modified Bessel function of the variable <math>x</math> is: <math>In(x)=i^{-n}Jn(ix)</math>, where <math>Jn(x)=\sum_k=0 &infty{(-1)^k(x/2)^n+2k}/k!gamma(n+k+1)</math>.
+
*The <math>n^th</math> order modified Bessel function of the variable <math>x</math> is: <math>In(x)=i^{-n}Jn(ix)</math>, where <math>Jn(x)=\sum_{k=0}^\infty{(-1)^k(x/2)^n+2k}/k!gamma(n+k+1)</math>.
 
*This function will give the result as error when 1.x or n is non numeric2. n<0, because n is the order of the function.
 
*This function will give the result as error when 1.x or n is non numeric2. n<0, because n is the order of the function.
  

Revision as of 04:58, 29 November 2013

BESSELI(x,n)


  • is the value to evaluate the function
  • is an integer which is the order of the Bessel function

Description

  • This function gives the value of the modified Bessel function.
  • Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
  • Bessel's Differential Equation is defined as: \sum_{n=0}^\infty

where is the arbitrary complex number.

  • But in most of the cases α is the non-negative real number.
  • The solutions of this equation are called Bessel Functions of order .
  • Bessel functions of the first kind, denoted as .
  • The order modified Bessel function of the variable is: , where .
  • This function will give the result as error when 1.x or n is non numeric2. n<0, because n is the order of the function.

Examples

  1. BESSELI(3,2)=2.245212431(Excel) this is the n th derivative(In(x))=3.9533702171(Calci)this is the 1st derivative(I1(x))
  2. BESSELI(5,1)=24.33564185
  3. BESSELI(6,0)=67.23440724(Excel) I0(x)61.3419369373(CALCI) I1(x)
  4. BESSELI(-2,1)=0.688948449(Excel) =-1.5906368573(CALCI)
  5. BESSELI(2,-1)=NAN ,because n<0.

See Also

References

| Bessel Function