Difference between revisions of "Manuals/calci/BESSELK"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left">  <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELK'''</font></font></font><font color="#48...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">  <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELK'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''v'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">, </font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''o'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
+
<div style="font-size:30px">'''BESSELK(x,n)'''</div><br/>
 +
*Where <math>x</math> is the value at which to evaluate the function
 +
*<math>n</math> is the integer which is the order of the Bessel Function
 +
==Description==
 +
*This function gives the value of the modified Bessel function when the arguments are purely imaginary.
 +
*Bessel functions is also called cylinder functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
 +
*Bessel's Differential Equation is defined as:<math> x^2 (d^2 y/dx^2) + x(dy/dx) + (x^2 - α^2)y =0</math>
 +
where α is the arbitary complex number.
 +
*But in most of the cases α is the non-negative real number.
 +
*The solutions of this equation are called Bessel Functions of order n. Bessel functions of the first kind, denoted as Jn(x), and
 +
*The Bessel function of the first kind of order  can be expressed as:Jn(x)=summation(k=0 to infinity){(-1)^k(x/2)^n+2k}/k!gamma(n+k+1).
 +
*The Bessel function of the second kind  Yn(x).The Bessel function of the 2nd kind of order  can be expressed as: Yn(x)=lt p tends to n {Jp(x)Cosp pi()- J-p(x)}/Sinp pi().
 +
*So the form of the general solution is y(x)=c1 In(x)+c2 Kn(x). where In(x)=i^-nJn(ix) and Kn(x)=lt p tends to n  pi()/2[( I-p(x)-I p(x))/Sinp pi()] are the modified Bessel functions of the first and second kind respectively.This function will give the result as error when 1.x or n is non numeric
 +
2. n<0, because n is the order of the function.
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Where 'v' is the value and 'o' is the order of the function. </font></font></font>
+
==Examples==
  
</div>
+
#BESSELK(5,2)=0.005308944 (EXCEL)Kn(x) =0.0040446134(CALCI)K1(x)
----
+
#BESSELK(0.2,4)=29900.2492 (EXCEL)Kn(x)=4.7759725484(CALCI)K1(x)
<div id="1SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">This function returns the modified Bessel function, which is calculated for imaginary arguments.</font></font></font></div>
+
#BESSELK(10,1)=0.000155369
----
+
#BESSELK(2,-1)=NAN
<div id="7SpaceContent" class="zcontent" align="left"> 
 
  
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">BESSELI returns the error value when 'v' and 'o' are nonnumeric. </font></font></font>
+
==See Also==
 +
*[[Manuals/calci/BESSELI | BESSELI ]]
 +
*[[Manuals/calci/BESSELY  | BESSELY ]]
 +
*[[Manuals/calci/BESSELJ  | BESSELJ ]]
  
<font color="#484848" face="Arial"></font>
+
==References==
 
+
[http://en.wikipedia.org/wiki/Absolute_value| Absolute_value]
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">'0' should be grater than 1</font></font></font>
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
BESSELK
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left"> 
 
 
 
[javascript:ToggleDiv('divExpCollAsst_4') <font color="#484848"><font face="Arial, sans-serif"><font size="2">BESSELK(v, o)</font></font></font>]
 
 
 
[javascript:ToggleDiv('divExpCollAsst_4') <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELK'''</font></font></font>][javascript:ToggleDiv('divExpCollAsst_4') <font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font>][javascript:ToggleDiv('divExpCollAsst_4') <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''C1R1, C2R2)'''</font></font></font>]
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''<nowiki>=BESSELK(2.5, 1) is 0.0739</nowiki>'''</font></font></font>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| class="  " | Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 2.5
 
| class="sshl_f" | 0.073891
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f  " | 1
 
| class="SelectTD SelectTD" |
 
|
 
|
 
|- class="odd"
 
| Row3
 
| class="                                      sshl_f                    " |
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
|
 
|
 
|
 
| class="  " |
 
|- class="odd"
 
| class=" " | Row5
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row6
 
|
 
|
 
|
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="9SpaceContent" class="zcontent" align="left"><div>[[Image:20.JPG|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/20.JPG]]</div></div>
 
----
 

Revision as of 00:25, 2 December 2013

BESSELK(x,n)


  • Where is the value at which to evaluate the function
  • is the integer which is the order of the Bessel Function

Description

  • This function gives the value of the modified Bessel function when the arguments are purely imaginary.
  • Bessel functions is also called cylinder functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
  • Bessel's Differential Equation is defined as:Failed to parse (syntax error): {\displaystyle x^2 (d^2 y/dx^2) + x(dy/dx) + (x^2 - α^2)y =0}

where α is the arbitary complex number.

  • But in most of the cases α is the non-negative real number.
  • The solutions of this equation are called Bessel Functions of order n. Bessel functions of the first kind, denoted as Jn(x), and
*The Bessel function of the first kind of order  can be expressed as:Jn(x)=summation(k=0 to infinity){(-1)^k(x/2)^n+2k}/k!gamma(n+k+1).
  • The Bessel function of the second kind Yn(x).The Bessel function of the 2nd kind of order can be expressed as: Yn(x)=lt p tends to n {Jp(x)Cosp pi()- J-p(x)}/Sinp pi().
  • So the form of the general solution is y(x)=c1 In(x)+c2 Kn(x). where In(x)=i^-nJn(ix) and Kn(x)=lt p tends to n pi()/2[( I-p(x)-I p(x))/Sinp pi()] are the modified Bessel functions of the first and second kind respectively.This function will give the result as error when 1.x or n is non numeric

2. n<0, because n is the order of the function.

Examples

  1. BESSELK(5,2)=0.005308944 (EXCEL)Kn(x) =0.0040446134(CALCI)K1(x)
  2. BESSELK(0.2,4)=29900.2492 (EXCEL)Kn(x)=4.7759725484(CALCI)K1(x)
  3. BESSELK(10,1)=0.000155369
  4. BESSELK(2,-1)=NAN

See Also

References

Absolute_value