Difference between revisions of "Manuals/calci/BESSELK"

From ZCubes Wiki
Jump to navigation Jump to search
Line 13: Line 13:
 
*The Bessel function of the first kind of order can be expressed as:<math>Jn(x)=sum_{k=0}^\infty}\frac{(-1)^k}{k!\Gamma(n+k+1)}.(\frac{x}{2})^{n+2k}</math>
 
*The Bessel function of the first kind of order can be expressed as:<math>Jn(x)=sum_{k=0}^\infty}\frac{(-1)^k}{k!\Gamma(n+k+1)}.(\frac{x}{2})^{n+2k}</math>
 
*The Bessel function of the second kind  <math>Yn(x)</math>.
 
*The Bessel function of the second kind  <math>Yn(x)</math>.
*The Bessel function of the 2nd kind of order  can be expressed as: <math>Yn(x)=\lim_{p \to n}{J_p(x)Cos(p\pi)- J_{-p}(x)}/Sin(p\pi).
+
*The Bessel function of the 2nd kind of order  can be expressed as: <math>Yn(x)=\lim_{p \to n}{J_p(x)Cos(p\pi)- J_{-p}(x)}/Sin(p\pi)</math>.
 
*So the form of the general solution is y(x)=c1 In(x)+c2 Kn(x). where In(x)=i^-nJn(ix) and Kn(x)=lt p tends to n  pi()/2[( I-p(x)-I p(x))/Sinp pi()] are the modified Bessel functions of the first and second kind respectively.
 
*So the form of the general solution is y(x)=c1 In(x)+c2 Kn(x). where In(x)=i^-nJn(ix) and Kn(x)=lt p tends to n  pi()/2[( I-p(x)-I p(x))/Sinp pi()] are the modified Bessel functions of the first and second kind respectively.
 
*This function will give the result as error when 1.x or n is non numeric 2. n<0, because n is the order of the function.
 
*This function will give the result as error when 1.x or n is non numeric 2. n<0, because n is the order of the function.

Revision as of 00:46, 2 December 2013

BESSELK(x,n)


  • Where is the value at which to evaluate the function
  • is the integer which is the order of the Bessel Function

Description

  • This function gives the value of the modified Bessel function when the arguments are purely imaginary.
  • Bessel functions is also called cylinder functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
  • Bessel's Differential Equation is defined as:

where is the Arbitrary Complex number.

  • But in most of the cases α is the non-negative real number.
  • The solutions of this equation are called Bessel Functions of order .
  • Bessel functions of the first kind, denoted as .
  • The Bessel function of the first kind of order can be expressed as:Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Jn(x)=sum_{k=0}^\infty}\frac{(-1)^k}{k!\Gamma(n+k+1)}.(\frac{x}{2})^{n+2k}}
  • The Bessel function of the second kind .
  • The Bessel function of the 2nd kind of order can be expressed as: .
  • So the form of the general solution is y(x)=c1 In(x)+c2 Kn(x). where In(x)=i^-nJn(ix) and Kn(x)=lt p tends to n pi()/2[( I-p(x)-I p(x))/Sinp pi()] are the modified Bessel functions of the first and second kind respectively.
  • This function will give the result as error when 1.x or n is non numeric 2. n<0, because n is the order of the function.

Examples

  1. BESSELK(5,2)=0.005308944 (EXCEL)Kn(x) =0.0040446134(CALCI)K1(x)
  2. BESSELK(0.2,4)=29900.2492 (EXCEL)Kn(x)=4.7759725484(CALCI)K1(x)
  3. BESSELK(10,1)=0.000155369
  4. BESSELK(2,-1)=NAN

See Also

References

Absolute_value