Difference between revisions of "Manuals/calci/GAMMAINV"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<div style="font-size:30px">'''GAMMAINV(prob,alpha,beta)'''</div><br/>
 
<div style="font-size:30px">'''GAMMAINV(prob,alpha,beta)'''</div><br/>
*Where 'prob' is the probability value associated with gamma distribution
+
*<math>prob</math> is the probability value associated with gamma distribution
*'Alpha'& 'beta' are the values of  the shape and rate parameters
+
*<math>alpha</math>& <math>beta</math> are the values of  the shape and rate parameters
 
==Description==
 
==Description==
*This function gives the inverse value of cumulative gamma probability distribution.
+
*This function gives the inverse value of Cumulative Gamma Probability Distribution.
*This  distribution is the continuous probability distribution on the positive real line and it is of the reciprocal of a variable distributed according to the gamma distribution with two parameters α&ß.  
+
*This  distribution is the Continuous Probability Distribution on the positive real line and it is of the reciprocal of a variable distributed according to the gamma distribution with two parameters <math>\alpha</math> & <math>\beta</math>.  
 
*It is used in Bayesian statistics.
 
*It is used in Bayesian statistics.
*In <math>GAMMAINV(prob,alpha,beta)</math> , prob is the probability value associated with gamma distribution,alpha is called shape parameter and beta is the rate parameter of the distribution.  
+
*In <math>GAMMAINV(prob,\alpha,\beta)</math> , <math>prob</math> is the probability value associated with Gamma Distribution,<math>\alpha</math> is called shape parameter and <math>beta</math> is the rate parameter of the distribution.  
*.If GAMMADIST(x,alpha,beta,TRUE)=prob, then GAMMAINV(prob,alpha,beta,)=x.  
+
*If <math>GAMMADIST(x,alpha,beta,TRUE)=prob</math>, then <math>GAMMAINV(prob,alpha,beta,)= x</math>.  
*GAMMAINV using the iterating method to find the value of x.suppose the iteration has not converged after 100 searches, then the function gives the error result.  
+
*GAMMAINV use the iterating method to find the value of <math>x</math>.
 +
*Suppose the iteration has not converged after 100 searches, then the function gives the error result.  
 
*This function will give the error result when   
 
*This function will give the error result when   
#Any one of the arguments are nonnumeric
+
1.Any one of the arguments are non-numeric
#alpha or beta<=0
+
2.<math>\alpha \le 0 </math> or <math>\beta \le 0 </math>
#prob<0 or prob>1
+
3.<math>prob < 0</math> or <math> prob > 1 </math>
  
 
==Examples==
 
==Examples==
#GAMMAINV(0.65189,2,5)=11.1335534510
+
#=GAMMAINV(0.65189,2,5) = 11.1335534510
#GAMMAINV(0.006867292,5,7)=8.155481331GAMMAINV(0.1543869,9,3)=18.0467153645
+
#=GAMMAINV(0.006867292,5,7) = 8.155481331
#GAMMAINV(1,9,3)=82.51739521528073(CALCI)=119.4248486(EXCEL)
+
#=GAMMAINV(0.1543869,9,3) = 18.0467153645
#GAMMAINV(1.1,9,3)=NAN, because prob>1
+
#=GAMMAINV(1,9,3) = 82.51739521528073
 +
#=GAMMAINV(1.1,9,3) = NAN, because <math> prob>1 </math>
 +
 
 
==See Also==
 
==See Also==
 
*[[Manuals/calci/GAMMADIST  | GAMMADIST]]
 
*[[Manuals/calci/GAMMADIST  | GAMMADIST]]

Revision as of 04:27, 4 December 2013

GAMMAINV(prob,alpha,beta)


  • is the probability value associated with gamma distribution
  • & are the values of the shape and rate parameters

Description

  • This function gives the inverse value of Cumulative Gamma Probability Distribution.
  • This distribution is the Continuous Probability Distribution on the positive real line and it is of the reciprocal of a variable distributed according to the gamma distribution with two parameters & .
  • It is used in Bayesian statistics.
  • In , is the probability value associated with Gamma Distribution, is called shape parameter and is the rate parameter of the distribution.
  • If , then .
  • GAMMAINV use the iterating method to find the value of .
  • Suppose the iteration has not converged after 100 searches, then the function gives the error result.
  • This function will give the error result when
1.Any one of the arguments are non-numeric
2. or 
3. or 

Examples

  1. =GAMMAINV(0.65189,2,5) = 11.1335534510
  2. =GAMMAINV(0.006867292,5,7) = 8.155481331
  3. =GAMMAINV(0.1543869,9,3) = 18.0467153645
  4. =GAMMAINV(1,9,3) = 82.51739521528073
  5. =GAMMAINV(1.1,9,3) = NAN, because

See Also

References

Gamma Distribution