Difference between revisions of "Manuals/calci/BESSELJ"
Jump to navigation
Jump to search
Line 6: | Line 6: | ||
*Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates. | *Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates. | ||
*Bessel's Differential Equation is defined as: <math>x^2\frac{d^2 y}{dx^2} + x\frac{dy}{dx} + (x^2 - \alpha^2)y =0</math> | *Bessel's Differential Equation is defined as: <math>x^2\frac{d^2 y}{dx^2} + x\frac{dy}{dx} + (x^2 - \alpha^2)y =0</math> | ||
− | where <math>\alpha</math> is the | + | where <math>\alpha</math> is the arbitrary Complex Number. |
*But in most of the cases <math>\alpha</math> is the non-negative real number. | *But in most of the cases <math>\alpha</math> is the non-negative real number. | ||
*The solutions of this equation are called Bessel Functions of order n. | *The solutions of this equation are called Bessel Functions of order n. |
Revision as of 03:26, 5 December 2013
BESSELJ(x,n)
- is the value to evaluate the function
- is the order of the Bessel function and is an integer
Description
- This function gives the value of the modified Bessel function.
- Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
- Bessel's Differential Equation is defined as:
where is the arbitrary Complex Number.
- But in most of the cases is the non-negative real number.
- The solutions of this equation are called Bessel Functions of order n.
- Bessel functions of the first kind, denoted as
- The Bessel function of the first kind of order can be expressed as:
- where or
- is the Gamma Function.
- This function will give result as error when
1. or is non numeric 2. , because is the order of the function
Examples
- BESSELJ(2,3) = 0.12894325
- BESSELJ(7,2) = -0.301417224
- BESSELJ(5,1) = -0.327579139