Difference between revisions of "Manuals/calci/IMLN"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...")
 
Line 1: Line 1:
<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
<div style="font-size:30px">'''IMLN(z)'''</div><br/>
 +
*<math>z</math> is the complex number is of the form <math>x+iy</math>  
  
Syntax
+
==Description==
 +
*This function gives the natural logarithm of a complex number.
 +
*In IMLN(z),Where z is the complex number in the form of "x+iy".i.e. x&y are the real numbers.
 +
*'I' imaginary unit .i=sqrt(-1).
 +
*A logarithm of z is a complex number w such that z = e^w and it is denoted by ln(z).
 +
*If z = x+iy with x&y are real numbers then natural logarithm of a complex number : <math>ln(z)= w = ln(|z|)  + iarg(z)                                                                                                                                              =ln(sqrt(x^2+y^2)+itan^-1(y/x</math> adding integer multiples of 2πi gives all the others.
 +
*We can use COMPLEX function to convert  real and imaginary number in to a complex number.
 +
==Examples==
  
</div></div>
+
#IMLN("3-2i")=1.28247467873077-0.588002603547568i
----
+
#IMLN("6+7i")=2.22132562824516+0.862170054667226i
<div id="4SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
#IMLN("4")=1.38629436111989 But calci is not considering the zero value of imaginary value of z.
 +
#IMLN("10i")=2.30258509299405+1.5707963267949i
  
Remarks
+
==See Also==
 +
*[[Manuals/calci/IMLOG10  | IMLOG10 ]]
 +
*[[Manuals/calci/IMLOG2  | IMLOG2 ]]
 +
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
  
</div></div>
 
----
 
<div id="2SpaceContent" align="left"><div class="ZEditBox" align="justify">
 
  
Examples
+
==References==
 
+
[http://en.wikipedia.org/wiki/Bessel_function  Bessel Function]
</div></div>
 
----
 
<div id="8SpaceContent" align="left"><div class="ZEditBox" align="justify">'''<font face="Times New Roman">''''''''''''<font size="6"> </font>''' '''''''''</font>'''</div></div>
 
----
 
<div id="11SpaceContent" align="left"><div class="ZEditBox mceEditable" align="justify">
 
 
 
<font size="5">Description</font>
 
 
 
</div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">This function  calculates the natural logarithm of a complex number in a+ bi or a + bj text format.</font></font></font>
 
 
 
</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"><font size="6">'''<font face="Arial">IMLN</font>'''</font></div></div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
 
 
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">The natural logarithm of a complex number is: </font></font></font>
 
 
 
<font color="#484848"></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where:</font></font></font>
 
 
 
<font color="#484848" face="Arial"></font>
 
 
 
<font color="#484848"></font>
 
 
 
</div></div>
 
----
 
<div id="6SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IMLN'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IN'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where IN</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">  is a complex number .</font></font></font>
 
 
 
</div></div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE1" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 1.2824746787307683+0.982793723247329i
 
| class="                                                                  sshl_f  " |
 
|
 
|
 
|- class="even"
 
| class="  " | Row2
 
| class="f52543                                                                                                                                                                                                                                                " |
 
| class="SelectTD" |
 
|
 
|
 
|- class="odd"
 
| Row3
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
|
 
|
 
|
 
|
 
|- class="odd"
 
| class=" " | Row5
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row6
 
|
 
|
 
|
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Let's see an example.</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">I.e.=IMLN(“2+3i”) is 1.28247+0.982794i</font></font></font>
 
 
 
<br />
 
 
 
</div>
 
----
 
<div id="9SpaceContent" class="zcontent" align="left"><div>[[Image:equation.jpg|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/equation.jpg]]</div></div>
 
----
 

Revision as of 03:00, 16 December 2013

IMLN(z)


  • is the complex number is of the form

Description

  • This function gives the natural logarithm of a complex number.
  • In IMLN(z),Where z is the complex number in the form of "x+iy".i.e. x&y are the real numbers.
  • 'I' imaginary unit .i=sqrt(-1).
  • A logarithm of z is a complex number w such that z = e^w and it is denoted by ln(z).
  • If z = x+iy with x&y are real numbers then natural logarithm of a complex number : adding integer multiples of 2πi gives all the others.
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

Examples

  1. IMLN("3-2i")=1.28247467873077-0.588002603547568i
  2. IMLN("6+7i")=2.22132562824516+0.862170054667226i
  3. IMLN("4")=1.38629436111989 But calci is not considering the zero value of imaginary value of z.
  4. IMLN("10i")=2.30258509299405+1.5707963267949i

See Also


References

Bessel Function