Difference between revisions of "Manuals/calci/IMLN"

From ZCubes Wiki
Jump to navigation Jump to search
Line 3: Line 3:
  
 
==Description==
 
==Description==
*This function gives the natural logarithm of a complex number.
+
*This function gives the Natural Logarithm of a complex number.
*In IMLN(z),Where z is the complex number in the form of "x+iy".i.e. x&y are the real numbers.
+
*In IMLN(z), where <math>z<math> is the complex number in the form of <math>x+iy</math>. i.e <math>x<math> & <math>y<math> are the real numbers.
*'I' imaginary unit .i=sqrt(-1).
+
*<math>I</math> imaginary unit <math>i=sqrt{-1}<math>.
*A logarithm of z is a complex number w such that z = e^w and it is denoted by ln(z).  
+
*A logarithm of <math>z</math> is a complex number w such that <math>z = e^w</math> and it is denoted by <math>ln(z)</math>.  
*If z = x+iy with x&y are real numbers then natural logarithm of a complex number : <math>ln(z)= w = ln(|z|) + iarg(z)                                                                                                                                             =ln(sqrt(x^2+y^2)+itan^-1(y/x</math> adding integer multiples of 2πi gives all the others.
+
*If <math>z = x+iy</math> with <math>x<math> & <math>y</math> are real numbers then natural logarithm of a complex number :  
*We can use COMPLEX function to convert   real and imaginary number in to a complex number.  
+
<math>ln(z)= w = ln(|z|) + iarg(z) = ln(\sqrt{x^2+y^2}+itan^{-1}(\frac{y}{x}</math>                                                                                                                           adding integer multiples of <math>2\pi i</math> gives all the others.
 +
*We can use COMPLEX function to convert real and imaginary number in to a complex number.
 +
 
 
==Examples==
 
==Examples==
  

Revision as of 05:12, 16 December 2013

IMLN(z)


  • is the complex number is of the form

Description

  • This function gives the Natural Logarithm of a complex number.
  • In IMLN(z), where . i.e Failed to parse (syntax error): {\displaystyle x<math> & <math>y<math> are the real numbers. *<math>I} imaginary unit is a complex number w such that and it is denoted by .
  • If with Failed to parse (syntax error): {\displaystyle x<math> & <math>y} are real numbers then natural logarithm of a complex number :

adding integer multiples of gives all the others.

  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

Examples

  1. IMLN("3-2i")=1.28247467873077-0.588002603547568i
  2. IMLN("6+7i")=2.22132562824516+0.862170054667226i
  3. IMLN("4")=1.38629436111989 But calci is not considering the zero value of imaginary value of z.
  4. IMLN("10i")=2.30258509299405+1.5707963267949i

See Also


References

Bessel Function