Difference between revisions of "Manuals/calci/NORMINV"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''NORMINV'''('''p''','''m''','''sd''') '''Where p'''  is a probability corresponding to the normal distribution ...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''NORMINV(prob,m,sd)'''</div><br/>
 +
*<math>prob</math>  is the probability  corresponding to the normal distribution,<math>m</math> is the mean , and <math>sd</math> is the standard deviation.
  
'''NORMINV'''('''p''','''m''','''sd''')
+
==Description==
 +
*This function gives the inverse of the normal cumulative distribution for the particular mean and standard deviation.
 +
*If <math>NORMDIST(x,m,sd,TRUE)=prob</math>, then <math>NORMINV(prob,m,sd)=x</math>.
 +
*<math>NORMINV</math> using the iterating method to find the value of x.
 +
*Suppose the iteration has not converged after 100 searches, then the function gives the error result.
 +
*In <math>NORMINV(prob,m,sd)</math>, where <math>prob</math> is the corresponding probability of the normal distribution, <math>m</math> is the arithmetic mean of the normal distribution and <math>sd</math> is the standard deviation of the normal distribution.
 +
*This function will return the result as error when
 +
1. any one of the argument is nonnumeric
 +
2.Suppose prob<0 or prob>1
 +
3.sd<=0.
 +
*If m=0 and sd=1,NORMINV uses the standard normal distribution.
  
'''Where p'''  is a probability corresponding to the normal distribution and  m  is the arithmetic mean of the distribution and '''sd'''  is the standard deviation of the distribution.
+
==Examples==
 +
#NORMINV(0.01884908749,17.4,3.2)=10.750011
 +
#NORMINV(0.998742,5.4,2.3)=12.349244172
 +
#NORMINV(1,7.2,2.3)=NULL
  
</div>
+
==See Also==
----
+
*[[Manuals/calci/NORMDIST  | NORMDIST ]]
<div id="1SpaceContent" class="zcontent" align="left">
+
*[[Manuals/calci/NORMSDIST  | NORMSDIST ]]
 +
*[[Manuals/calci/NORMSINV  | NORMSINV ]]
  
It calculates  the inverse of the normal cumulative distribution for the specified mean and standard deviation.
+
==References==
 
 
</div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
 
 
·          NORMINV displays error for the nonnumeric argument.
 
 
 
·          When p&lt;0 or &gt; 1 , NORMINV displays error.
 
 
 
·          When sd &lt;= 0, NORMINV shows error.
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
NORMINV
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
 
 
<font size="3"><font face="Times New Roman">Let’s see an example in (Column1 Row 1, Column1Row2, Column1Row3)</font></font>
 
 
 
<font size="3">i.e.=NORMINV(C1R1,C1R2,C1R3)</font>
 
 
 
<font size="3"><nowiki>=NORMINV(0.808789,30,0.5) is 30.4367</nowiki></font>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left"><div>
 
 
 
{| id="TABLE1" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| class="        " | Column2
 
| class="    " | Column3
 
| class="  " |
 
| class="  " | Column4
 
|
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 0.808789
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 30
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
|- class="odd"
 
| Row3
 
| class="sshl_f" | 0.5
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="  " |
 
| class="sshl_f" |
 
|
 
|- class="even"
 
| Row4
 
| class="sshl_f" | 30.4367
 
| class="sshl_f" |
 
|
 
| class=" " |
 
| class="sshl_f" |
 
|
 
|- class="odd"
 
| class="sshl_f" | Row5
 
| class="sshl_f " |
 
| class="  " |
 
|
 
|
 
| class=" SelectTD SelectTD" |
 
<div id="5Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="5Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
|
 
|- class="even"
 
| class=" " | Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
| class="sshl_f" |
 
|
 
|
 
|}
 
 
 
<div align="left"></div>''''''</div></div>
 
----
 

Revision as of 03:49, 1 January 2014

NORMINV(prob,m,sd)


  • is the probability corresponding to the normal distribution, is the mean , and is the standard deviation.

Description

  • This function gives the inverse of the normal cumulative distribution for the particular mean and standard deviation.
  • If , then .
  • using the iterating method to find the value of x.
  • Suppose the iteration has not converged after 100 searches, then the function gives the error result.
  • In , where is the corresponding probability of the normal distribution, is the arithmetic mean of the normal distribution and is the standard deviation of the normal distribution.
  • This function will return the result as error when
1. any one of the argument is nonnumeric
2.Suppose prob<0 or prob>1
3.sd<=0.
  • If m=0 and sd=1,NORMINV uses the standard normal distribution.

Examples

  1. NORMINV(0.01884908749,17.4,3.2)=10.750011
  2. NORMINV(0.998742,5.4,2.3)=12.349244172
  3. NORMINV(1,7.2,2.3)=NULL

See Also

References