Difference between revisions of "Manuals/calci/MINVERSE"

From ZCubes Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
*Let <math>A<math> be the 2x2 matrix with the elements A=|a    b
 
*Let <math>A<math> be the 2x2 matrix with the elements A=|a    b
 
                                                           c    d|.
 
                                                           c    d|.
*Then the inverse of matrix <math>A<math> is denoted by A^-1.So A^-1=|a       b|^-=1/ad-bc  |d     -b
+
*Then the inverse of matrix <math>A</math> is denoted by <math>A^{-1}</math>.So <math>A^{-1}=\begin{bmatrix}
                                                                                  -c     a|.
+
a & b \\
 +
c & d \\
 +
\end{bmatrix}^{-1}= \frac{1}{ad-bc} *   \begin{bmatrix}
 +
d & -b \\
 +
-c & a \\
 +
\end{bmatrix} </math>
 +
</math>
 
*Now let A be the matrix is of order nXn.
 
*Now let A be the matrix is of order nXn.
 
*Then the inverse of A is A^-1= 1/det(A) . adj(A)
 
*Then the inverse of A is A^-1= 1/det(A) . adj(A)

Revision as of 04:56, 1 January 2014

MINVERSE(arr)


  • is the array of numeric elements

Description

  • This function gives the inverse matrix for the given matrix.
  • We have to find a inverse of a matrix then it should satisfy the following conditions
  • 1.A matrix must be a square matrix.
  • 2.It's determinant not equal to 0.
  • Let is denoted by .So

</math>

  • Now let A be the matrix is of order nXn.
  • Then the inverse of A is A^-1= 1/det(A) . adj(A)
  • Where adj(A) is the adjoint of A.
  • Adjoint is the matrix formed by taking the transpose of the co-factor matrix of a given original matrix.
  • Also A.A^-1=A^-1.A=I, where I is the identity matrix.Non-square matrices do not have inverses.
  • Not all square matrices have inverses.
  • A square matrix which has an inverse is called invertible or non-singular, and a square matrix without an inverse is called non-invertible or singular.
  • This function will return the result as error when
1. Any one of the cell is non-numeric or any cell is empty or contain text
2. Suppose number of rows not equal to number of columns


Examples

Matrix A A=(4 3

  3     2)

MINVERSE(B5:C6)=(-2 3

                 3       -4)

MATRIX A A=(3 4

     6       8)

MINVERSE(C4:D5)=Null, because its det value is 0. MATRIX A A=(2 3

  4     7)

MINVERSE(B4:C5)=(3.5 -1.5

               -2           1)


See Also

References