Difference between revisions of "Manuals/calci/PASCALTRIANGLE"

From ZCubes Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
*Then from the 2nd row each number in the triangle is the sum of the two directly above it.
 
*Then from the 2nd row each number in the triangle is the sum of the two directly above it.
 
*The construction is related to the binomial coefficients by Pascal's rule is :                                 
 
*The construction is related to the binomial coefficients by Pascal's rule is :                                 
<math>(x+y)^n=\sum_{k=0}^n \binom{n}{k}x^{n-k} .y^k </math>.    where <math> \binom{n}{k}</math> is the binomial coefficient.
+
<math>(x+y)^n=\sum_{k=0}^n \binom{n}{k}x^{n-k} .y^k </math>.    where <math> \dbinom{n}{k}</math> is the binomial coefficient.
 
*This function will return the result as error when the r <math> \le 0</math>.
 
*This function will return the result as error when the r <math> \le 0</math>.
  
 
==Examples==
 
==Examples==
#PASCALTRIANGLE(1)=1
+
*1.PASCALTRIANGLE(1)=1
#PASCALTRIANGLE(2)=1   
+
*2.PASCALTRIANGLE(2)=1   
 
                   1      1
 
                   1      1
  
#PASCALTRIANGLE(3)=1     
+
*3.PASCALTRIANGLE(3)=1     
 
                   1      1
 
                   1      1
 
                   1      2        1
 
                   1      2        1
 
   
 
   
#PASCALTRIANGLE(0)=NULL
+
*4.PASCALTRIANGLE(0)=NULL
  
  

Revision as of 22:52, 5 January 2014

PASCALTRIANGLE(r)


  • is the row number.

Description

  • This function gives the Coefficients of the Pascal triangle.
  • In , r is the row number of the Pascal triangle.
  • Pascal triangle is the arrangement of numbers of the Binomial coefficients in a triangular shape.
  • It is started with the number 1 at the top in the 1st row.
  • Then from the 2nd row each number in the triangle is the sum of the two directly above it.
  • The construction is related to the binomial coefficients by Pascal's rule is :

. where is the binomial coefficient.

  • This function will return the result as error when the r .

Examples

  • 1.PASCALTRIANGLE(1)=1
  • 2.PASCALTRIANGLE(2)=1
                 1       1
  • 3.PASCALTRIANGLE(3)=1
                 1       1
                 1       2         1

  • 4.PASCALTRIANGLE(0)=NULL


See Also

References


PASCALTRIANGLE(level)

where

level is any real number


PASCALTRIANGLE function returns pascal's triangle for the given level.


PASCALTRIANGLE returns NaN if level is not a real number.


PASCALTRIANGLE


Lets see an example in (Column2Row1)

?UNIQ9eec20026ff870ff-nowiki-00000002-QINU?

Returns 1,1,1,1,2,1 for PASCALTRIANGLE(3)


Syntax

Remarks

Examples

Description