Difference between revisions of "Manuals/calci/TTESTEQUALVARIANCES"
Jump to navigation
Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''TTESTTWOSAMPLESEQUALVARIANCES('''Array1, Array2, HypothesizeDiff, Alpha, NewTableFlag) where, '''Array1 '''...") |
|||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''TTESTTWOSAMPLESEQUALVARIANCES(ar1,ar2,md,alpha,lv)'''</div><br/> |
+ | *<math>ar1 </math> and <math> ar2 </math> are set of values. | ||
+ | *<math>md </math> is the Hypothesized Mean Difference. | ||
+ | *<math> alpha </math> is the significance level. | ||
+ | *<math> lv </math> is the logical value. | ||
− | |||
− | where | + | ==Description== |
+ | *This function calculating the two Sample for equal variances determines whether two sample means are equal. | ||
+ | *We can use this test when both: | ||
+ | *1.the two sample sizes are equal; | ||
+ | *2.it can be assumed that the two distributions have the same variance. | ||
+ | *In TTESTTWOSAMPLESEQUALVARIANCES(ar1,ar2,md,alpha,lv), ar1 and ar2 are two arrays of sample values.md is the Hypothesized Mean Difference . | ||
+ | *Suppose md=0 which indicates that sample means are hypothesized to be equal. | ||
+ | *alpha is the significance level which ranges from 0 to1. | ||
+ | *lv is the logical value like TRUE or FALSE. | ||
+ | *TRUE is indicating the result will display in new worksheet.Suppose we are omitted the lv value it will consider the value as FALSE. | ||
+ | *The t statistic of this function calculated by: | ||
+ | <math>t = \frac{\bar{x_1}-\bar{x_2}}{s_x_1.s_x_2.\sqrt\frac{2}{n}}</math> ,where <math>s_x_1.s_x_2 = \sqrt\frac{1}{2}(s_x_1^2+s_x_2^2)</math>. | ||
+ | *Here <math>s_x_1</math> and <math>s_x_2</math> are unbiased estimators of the variances of two samples.<math>s_x_1.s_x_2</math> is the grand standard deviation data 1 and data2 and n is the data points of two data set. | ||
+ | *This function will give the result as error when | ||
+ | 1.any one of the argument is nonnumeric. | ||
+ | 2.alpha>1 | ||
+ | 3.ar1 and ar2 are having different number of data points. | ||
− | |||
− | + | ==Examples== | |
− | + | {| class="wikitable" | |
− | + | |+Spreadsheet | |
− | + | |- | |
− | + | ! !! A !! B !! C !! D!! E !! F | |
+ | |- | ||
+ | ! 1 | ||
+ | | 10 || 15 || 18 || 27 || 12 || 34 | ||
+ | |- | ||
+ | ! 2 | ||
+ | | 17 || 20 || 25 || 39 || 9 || 14 | ||
+ | |} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | #=TTESTSAMPLESEQUALVARIANCE(A1:F1,A2:F2,0.5) | |
− | |||
− | |||
− | + | ==See Also== | |
+ | *[[Manuals/calci/TTEST | TTEST ]] | ||
+ | *[[Manuals/calci/TDIST | TDIST ]] | ||
+ | *[[Manuals/calci/TINV | TINV ]] | ||
+ | *[[Manuals/calci/TTESTUNEQUALVARIANCES | TTESTUNEQUALVARIANCES ]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ==References== | |
− |
Revision as of 03:11, 3 February 2014
TTESTTWOSAMPLESEQUALVARIANCES(ar1,ar2,md,alpha,lv)
- and are set of values.
- is the Hypothesized Mean Difference.
- is the significance level.
- is the logical value.
Description
- This function calculating the two Sample for equal variances determines whether two sample means are equal.
- We can use this test when both:
- 1.the two sample sizes are equal;
- 2.it can be assumed that the two distributions have the same variance.
- In TTESTTWOSAMPLESEQUALVARIANCES(ar1,ar2,md,alpha,lv), ar1 and ar2 are two arrays of sample values.md is the Hypothesized Mean Difference .
- Suppose md=0 which indicates that sample means are hypothesized to be equal.
- alpha is the significance level which ranges from 0 to1.
- lv is the logical value like TRUE or FALSE.
- TRUE is indicating the result will display in new worksheet.Suppose we are omitted the lv value it will consider the value as FALSE.
- The t statistic of this function calculated by:
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. TeX parse error: Double subscripts: use braces to clarify"): {\displaystyle t={\frac {{\bar {x_{1}}}-{\bar {x_{2}}}}{s_{x}_{1}.s_{x}_{2}.{\sqrt {\frac {2}{n}}}}}} ,where Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. TeX parse error: Double subscripts: use braces to clarify"): {\displaystyle s_{x}_{1}.s_{x}_{2}={\sqrt {\frac {1}{2}}}(s_{x}_{1}^{2}+s_{x}_{2}^{2})} .
- Here Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. TeX parse error: Double subscripts: use braces to clarify"): {\displaystyle s_{x}_{1}} and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. TeX parse error: Double subscripts: use braces to clarify"): {\displaystyle s_{x}_{2}} are unbiased estimators of the variances of two samples.Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. TeX parse error: Double subscripts: use braces to clarify"): {\displaystyle s_{x}_{1}.s_{x}_{2}} is the grand standard deviation data 1 and data2 and n is the data points of two data set.
- This function will give the result as error when
1.any one of the argument is nonnumeric. 2.alpha>1 3.ar1 and ar2 are having different number of data points.
Examples
A | B | C | D | E | F | |
---|---|---|---|---|---|---|
1 | 10 | 15 | 18 | 27 | 12 | 34 |
2 | 17 | 20 | 25 | 39 | 9 | 14 |
- =TTESTSAMPLESEQUALVARIANCE(A1:F1,A2:F2,0.5)
See Also