Difference between revisions of "Manuals/calci/TTESTEQUALVARIANCES"
Jump to navigation
Jump to search
Line 38: | Line 38: | ||
|} | |} | ||
+ | #=TTESTTWOSAMPLESEQUALVARIANCES(A1:F1,A2:F2,2,0.5) | ||
− | + | {| class="wikitable" | |
− | + | |+Spreadsheet | |
+ | |- | ||
+ | ! !! Variable 1 !! Variable 2 | ||
+ | |- | ||
+ | ! Mean | ||
+ | | 19.333333333333332 || 20.666666666666668 | ||
+ | |- | ||
+ | ! Variance | ||
+ | | 87.06666666666666 || 109.86666666666667 | ||
+ | |- | ||
+ | ! Observations | ||
+ | | 6 || 6 | ||
+ | ! Pooled Variance | ||
+ | | 98.46666666666667 | ||
+ | |- | ||
+ | ! Hypothesized Mean Difference | ||
+ | | 2 | ||
+ | |- | ||
+ | ! Degree Of Freedom | ||
+ | | 10 | ||
+ | |- | ||
+ | ! T- Statistics | ||
+ | | -0.5818281835787091 | ||
+ | |- | ||
+ | ! P(T<=t) One-tail | ||
+ | | 0.28678199670723614 | ||
+ | |- | ||
+ | ! T Critical One-Tail | ||
+ | | 12 | ||
+ | |- | ||
+ | ! P(T<=t) Two-tail | ||
+ | | 0.5735639934144723 | ||
+ | |- | ||
+ | ! T Critical Two-Tail | ||
+ | | 0.6998120613365443 | ||
+ | |} | ||
==See Also== | ==See Also== |
Revision as of 00:12, 10 February 2014
TTESTTWOSAMPLESEQUALVARIANCES(ar1,ar2,md,alpha,lv)
- and are set of values.
- is the Hypothesized Mean Difference.
- is the significance level.
- is the logical value.
Description
- This function calculating the two Sample for equal variances determines whether two sample means are equal.
- We can use this test when both:
- 1.The two sample sizes are equal;
- 2.It can be assumed that the two distributions have the same variance.
- In , and are two arrays of sample values. is the Hypothesized Mean Difference .
- Suppose md=0 which indicates that sample means are hypothesized to be equal.
- is the significance level which ranges from 0 to 1.
- is the logical value like TRUE or FALSE.
- TRUE is indicating the result will display in new worksheet.Suppose we are omitted the lv value it will consider the value as FALSE.
- The t statistic of this function calculated by:
where
- Here and are unbiased estimators of the variances of two samples. is the grand standard deviation data 1 and data2 and n is the data points of two data set.
- This function will give the result as error when
1.any one of the argument is non-numeric. 2.alpha>1 3. and are having different number of data points.
Examples
A | B | C | D | E | F | |
---|---|---|---|---|---|---|
1 | 10 | 15 | 18 | 27 | 12 | 34 |
2 | 17 | 20 | 25 | 39 | 9 | 14 |
- =TTESTTWOSAMPLESEQUALVARIANCES(A1:F1,A2:F2,2,0.5)
Variable 1 | Variable 2 | |||
---|---|---|---|---|
Mean | 19.333333333333332 | 20.666666666666668 | ||
Variance | 87.06666666666666 | 109.86666666666667 | ||
Observations | 6 | 6 | Pooled Variance | 98.46666666666667 |
Hypothesized Mean Difference | 2 | |||
Degree Of Freedom | 10 | |||
T- Statistics | -0.5818281835787091 | |||
P(T<=t) One-tail | 0.28678199670723614 | |||
T Critical One-Tail | 12 | |||
P(T<=t) Two-tail | 0.5735639934144723 | |||
T Critical Two-Tail | 0.6998120613365443 |
See Also