Difference between revisions of "Manuals/calci/HESSENBERG"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div style="font-size:30px">'''HESSENBERG'''</div><br/>")
 
Line 1: Line 1:
<div style="font-size:30px">'''HESSENBERG'''</div><br/>
+
<div style="font-size:30px">'''MATRIX("HESSENBERG",order)'''</div><br/>
 +
*<math>order</math> is the order of the  Hessenberg matrix.
 +
 
 +
==Description==
 +
*This function gives the matrix with the property of Hessenberg matrix.
 +
*A Hessenberg matrix is a special kind of square matrix, one that is "almost" triangular.
 +
*To be exact, an upper Hessenberg matrix has zero entries below the first subdiagonal, and a lower Hessenberg matrix has zero entries above the first superdiagonal.
 +
*Here MATRIX("hessenberg") displays the hessenberg matrix of order 3.
 +
*An nxn matrix with a_i,j=0 for i>j+1 is called a Hessenberg matrix.
 +
*So the form of a Hessenberg matrix is:   
 +
*So the matrix is zero below the first subdiagonal.
 +
*If the matrix is symmetric or Hermitian, the form is tridiagonal.
 +
 
 +
\begin{bmatrix}
 +
a_{11} & a_{12} & a_{13} \cdots & a_{1(n-1)}& a_{1n}    \\
 +
a_{21} & a_{22} & a_{23} \cdots& a_{2(n-1)}& a_{2n}    \\
 +
0 & a_{32} & a_{33} \cdots& a_{3(n-1)}& a_{3n} \\
 +
0 & 0 & a_{43} \cdots& a_{4(n-1)}& a_{4n} \\
 +
0 & 0 & 0 \cdots& a_{5(n-1)}& a_{5n} \\
 +
\vdots & \ddots & \vdots \\
 +
0      & 0 & 0  & a_{(n-1)(n-2)} & a_{(n-1)(n-1)} & a_{(n-1)n}\\
 +
0      & 0 & 0  & 0 & a_{n(n-1)} & a_{nn}\\
 +
\end{bmatrix}

Revision as of 11:44, 24 April 2015

MATRIX("HESSENBERG",order)


  • is the order of the Hessenberg matrix.

Description

  • This function gives the matrix with the property of Hessenberg matrix.
  • A Hessenberg matrix is a special kind of square matrix, one that is "almost" triangular.
  • To be exact, an upper Hessenberg matrix has zero entries below the first subdiagonal, and a lower Hessenberg matrix has zero entries above the first superdiagonal.
  • Here MATRIX("hessenberg") displays the hessenberg matrix of order 3.
  • An nxn matrix with a_i,j=0 for i>j+1 is called a Hessenberg matrix.
  • So the form of a Hessenberg matrix is:
  • So the matrix is zero below the first subdiagonal.
  • If the matrix is symmetric or Hermitian, the form is tridiagonal.

\begin{bmatrix} a_{11} & a_{12} & a_{13} \cdots & a_{1(n-1)}& a_{1n} \\ a_{21} & a_{22} & a_{23} \cdots& a_{2(n-1)}& a_{2n} \\ 0 & a_{32} & a_{33} \cdots& a_{3(n-1)}& a_{3n} \\ 0 & 0 & a_{43} \cdots& a_{4(n-1)}& a_{4n} \\ 0 & 0 & 0 \cdots& a_{5(n-1)}& a_{5n} \\ \vdots & \ddots & \vdots \\ 0 & 0 & 0 & a_{(n-1)(n-2)} & a_{(n-1)(n-1)} & a_{(n-1)n}\\ 0 & 0 & 0 & 0 & a_{n(n-1)} & a_{nn}\\ \end{bmatrix}