Difference between revisions of "Manuals/calci/LEHMER"

From ZCubes Wiki
Jump to navigation Jump to search
Line 6: Line 6:
 
*The the n×n Lehmer matrix, is the constant symmetric matrix defined by <math>a_{ij}=\frac{min{i,j}}{max{i,j}} =  
 
*The the n×n Lehmer matrix, is the constant symmetric matrix defined by <math>a_{ij}=\frac{min{i,j}}{max{i,j}} =  
 
\begin{cases} \frac{i}{j} & j\ge i \\
 
\begin{cases} \frac{i}{j} & j\ge i \\
\frac{j}{i} & j\gg i
+
\frac{j}{i} & j\g i
 
  \end{cases} </math>                                                             
 
  \end{cases} </math>                                                             
 
*Also the inverse of a Lehmer matrix is a tridiagonal matrix and is known to be symmetric tridiagonal.  
 
*Also the inverse of a Lehmer matrix is a tridiagonal matrix and is known to be symmetric tridiagonal.  
 
*And the value of this matrix have strictly negative entries (i.e., with positive eigenvalues).
 
*And the value of this matrix have strictly negative entries (i.e., with positive eigenvalues).
 
*Example of 2x2 and 3x3 lehmer matrices and its inverses are:
 
*Example of 2x2 and 3x3 lehmer matrices and its inverses are:

Revision as of 08:39, 30 April 2015

MATRIX("LEHMER",order)


  • is the order of the Lehmer matrix.

Description

  • This function gives the lehmer matrix of order 3.
  • The the n×n Lehmer matrix, is the constant symmetric matrix defined by Failed to parse (unknown function "\g"): {\displaystyle a_{ij}=\frac{min{i,j}}{max{i,j}} = \begin{cases} \frac{i}{j} & j\ge i \\ \frac{j}{i} & j\g i \end{cases} }
  • Also the inverse of a Lehmer matrix is a tridiagonal matrix and is known to be symmetric tridiagonal.
  • And the value of this matrix have strictly negative entries (i.e., with positive eigenvalues).
  • Example of 2x2 and 3x3 lehmer matrices and its inverses are: