Difference between revisions of "Manuals/calci/REDHEFFER"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div style="font-size:30px">'''REDHEFFER'''</div><br/>")
 
Line 1: Line 1:
<div style="font-size:30px">'''REDHEFFER'''</div><br/>
+
<div style="font-size:30px">'''MATRIX("REDHEFFER",order)'''</div><br/>
 +
*<math>order</math> is the size of the Redheffer matrix.
 +
 
 +
==Description==
 +
*This function gives the redheffer matrix of order 3.
 +
*A Redheffer matrix is a square (0,1) -matrix with elements <math>a_(ij)</math> equal to 1 if j=1 or i/j  (i divides j), and 0 otherwise. *For n=1, 2, ..., The first few Redheffer matrices are
 +
<math>\begin{bmatrix}
 +
1 \\
 +
\end{bmatrix}</math>
 +
<math>\begin{bmatrix}
 +
1 & 1 \\
 +
1 & 1 \\
 +
\end{bmatrix}</math>
 +
<math>\begin{bmatrix}
 +
1 & 1  & 1 \\
 +
1 & 1  & 0 \\
 +
1 & 0 & 1 \\
 +
\end{bmatrix}</math>
 +
<math>\begin{bmatrix}
 +
1 & 1  & 1  & 1 \\
 +
1 & 1  & 0  & 1 \\
 +
1 & 0 & 1 & 0  \\
 +
1 & 0 & 0 & 1 \\
 +
\end{bmatrix}</math>
 +
*The determinant of the n×n Redheffer matrix is equal to the Mertens function M(n).
 +
 
 +
==Examples==
 +
*1.MATRIX("redheffer")
 +
{| class="wikitable"
 +
|-
 +
| 1 || 1 || 1
 +
|-
 +
| 1 || 1 || 0
 +
|-
 +
| 1 || 0 || 1
 +
|}
 +
*2.MATRIX("redheffer",6)
 +
{| class="wikitable"
 +
|-
 +
| 1 || 1 || 1 || 1 || 1 || 1
 +
|-
 +
| 1 || 1 || 0 || 1 || 0 || 1
 +
|-
 +
| 1 || 0 || 1 || 0 || 0 || 1
 +
|-
 +
| 1 || 0 || 0 || 1 || 0 || 0
 +
|-
 +
| 1 || 0 || 0 || 0 || 1 || 0
 +
|-
 +
| 1 || 0 || 0 || 0 || 0 || 1
 +
|}
 +
 
 +
==See Also==
 +
*[[Manuals/calci/ANTIDIAGONAL| ANTIDIAGONAL]]
 +
*[[Manuals/calci/CONFERENCE| CONFERENCE]]
 +
*[[Manuals/calci/CIRCULANT| CIRCULANT]]
 +
*[[Manuals/calci/HANKEL| HANKEL]]
 +
 
 +
 
 +
==References==

Revision as of 11:58, 30 April 2015

MATRIX("REDHEFFER",order)


  • is the size of the Redheffer matrix.

Description

  • This function gives the redheffer matrix of order 3.
  • A Redheffer matrix is a square (0,1) -matrix with elements equal to 1 if j=1 or i/j (i divides j), and 0 otherwise. *For n=1, 2, ..., The first few Redheffer matrices are

  • The determinant of the n×n Redheffer matrix is equal to the Mertens function M(n).

Examples

  • 1.MATRIX("redheffer")
1 1 1
1 1 0
1 0 1
  • 2.MATRIX("redheffer",6)
1 1 1 1 1 1
1 1 0 1 0 1
1 0 1 0 0 1
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

See Also


References