Difference between revisions of "Manuals/calci/REDHEFFER"
Jump to navigation
Jump to search
(Created page with "<div style="font-size:30px">'''REDHEFFER'''</div><br/>") |
|||
Line 1: | Line 1: | ||
− | <div style="font-size:30px">'''REDHEFFER'''</div><br/> | + | <div style="font-size:30px">'''MATRIX("REDHEFFER",order)'''</div><br/> |
+ | *<math>order</math> is the size of the Redheffer matrix. | ||
+ | |||
+ | ==Description== | ||
+ | *This function gives the redheffer matrix of order 3. | ||
+ | *A Redheffer matrix is a square (0,1) -matrix with elements <math>a_(ij)</math> equal to 1 if j=1 or i/j (i divides j), and 0 otherwise. *For n=1, 2, ..., The first few Redheffer matrices are | ||
+ | <math>\begin{bmatrix} | ||
+ | 1 \\ | ||
+ | \end{bmatrix}</math> | ||
+ | <math>\begin{bmatrix} | ||
+ | 1 & 1 \\ | ||
+ | 1 & 1 \\ | ||
+ | \end{bmatrix}</math> | ||
+ | <math>\begin{bmatrix} | ||
+ | 1 & 1 & 1 \\ | ||
+ | 1 & 1 & 0 \\ | ||
+ | 1 & 0 & 1 \\ | ||
+ | \end{bmatrix}</math> | ||
+ | <math>\begin{bmatrix} | ||
+ | 1 & 1 & 1 & 1 \\ | ||
+ | 1 & 1 & 0 & 1 \\ | ||
+ | 1 & 0 & 1 & 0 \\ | ||
+ | 1 & 0 & 0 & 1 \\ | ||
+ | \end{bmatrix}</math> | ||
+ | *The determinant of the n×n Redheffer matrix is equal to the Mertens function M(n). | ||
+ | |||
+ | ==Examples== | ||
+ | *1.MATRIX("redheffer") | ||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | | 1 || 1 || 1 | ||
+ | |- | ||
+ | | 1 || 1 || 0 | ||
+ | |- | ||
+ | | 1 || 0 || 1 | ||
+ | |} | ||
+ | *2.MATRIX("redheffer",6) | ||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | | 1 || 1 || 1 || 1 || 1 || 1 | ||
+ | |- | ||
+ | | 1 || 1 || 0 || 1 || 0 || 1 | ||
+ | |- | ||
+ | | 1 || 0 || 1 || 0 || 0 || 1 | ||
+ | |- | ||
+ | | 1 || 0 || 0 || 1 || 0 || 0 | ||
+ | |- | ||
+ | | 1 || 0 || 0 || 0 || 1 || 0 | ||
+ | |- | ||
+ | | 1 || 0 || 0 || 0 || 0 || 1 | ||
+ | |} | ||
+ | |||
+ | ==See Also== | ||
+ | *[[Manuals/calci/ANTIDIAGONAL| ANTIDIAGONAL]] | ||
+ | *[[Manuals/calci/CONFERENCE| CONFERENCE]] | ||
+ | *[[Manuals/calci/CIRCULANT| CIRCULANT]] | ||
+ | *[[Manuals/calci/HANKEL| HANKEL]] | ||
+ | |||
+ | |||
+ | ==References== |
Revision as of 11:58, 30 April 2015
MATRIX("REDHEFFER",order)
- is the size of the Redheffer matrix.
Description
- This function gives the redheffer matrix of order 3.
- A Redheffer matrix is a square (0,1) -matrix with elements equal to 1 if j=1 or i/j (i divides j), and 0 otherwise. *For n=1, 2, ..., The first few Redheffer matrices are
- The determinant of the n×n Redheffer matrix is equal to the Mertens function M(n).
Examples
- 1.MATRIX("redheffer")
1 | 1 | 1 |
1 | 1 | 0 |
1 | 0 | 1 |
- 2.MATRIX("redheffer",6)
1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 1 |
See Also