Difference between revisions of "Manuals/calci/HESSENBERG"

From ZCubes Wiki
Jump to navigation Jump to search
 
(7 intermediate revisions by 2 users not shown)
Line 7: Line 7:
 
*To be exact, an upper Hessenberg matrix has zero entries below the first subdiagonal, and a lower Hessenberg matrix has zero entries above the first superdiagonal.  
 
*To be exact, an upper Hessenberg matrix has zero entries below the first subdiagonal, and a lower Hessenberg matrix has zero entries above the first superdiagonal.  
 
*Here MATRIX("hessenberg") displays the hessenberg matrix of order 3.  
 
*Here MATRIX("hessenberg") displays the hessenberg matrix of order 3.  
*An nxn matrix with a_i,j=0 for i>j+1 is called a Hessenberg matrix.
+
*An nxn matrix with <math>a_{i,j}=0</math> for <math>i> j+1</math> is called a Hessenberg matrix.
*So the form of a Hessenberg matrix is:  
+
*So the form of a Hessenberg matrix is: \begin{bmatrix}
*So the matrix is zero below the first subdiagonal.
 
*If the matrix is symmetric or Hermitian, the form is tridiagonal.
 
 
 
\begin{bmatrix}
 
 
a_{11} & a_{12} & a_{13} \cdots & a_{1(n-1)}& a_{1n}    \\
 
a_{11} & a_{12} & a_{13} \cdots & a_{1(n-1)}& a_{1n}    \\
 
a_{21} & a_{22} & a_{23} \cdots& a_{2(n-1)}& a_{2n}    \\
 
a_{21} & a_{22} & a_{23} \cdots& a_{2(n-1)}& a_{2n}    \\
Line 21: Line 17:
 
0      & 0 & 0  & a_{(n-1)(n-2)} & a_{(n-1)(n-1)} & a_{(n-1)n}\\
 
0      & 0 & 0  & a_{(n-1)(n-2)} & a_{(n-1)(n-1)} & a_{(n-1)n}\\
 
0      & 0 & 0  & 0 & a_{n(n-1)} & a_{nn}\\
 
0      & 0 & 0  & 0 & a_{n(n-1)} & a_{nn}\\
\end{bmatrix}
+
\end{bmatrix}  
 +
*So the matrix is zero below the first subdiagonal.
 +
*If the matrix is symmetric or Hermitian, the form is tridiagonal.
 +
 
 +
==Examples==
 +
*1.MATRIX("hessenberg") =53
 +
*2.MATRIX("hessenberg",3)
 +
{| class="wikitable"
 +
|-
 +
| -10 || -50 || -92
 +
|-
 +
| -32 || 62 || 33
 +
|-
 +
| 0 || -99 || -81
 +
|}
 +
*3.MATRIX("hessenberg",6)
 +
{| class="wikitable"
 +
|-
 +
| 99 || 88 || -73 ||20 || -17 || -10
 +
|-
 +
| -28 || 40 || -2 || 15 || -48 || 55
 +
|-
 +
| 0 || -46 || 56 || -76 || -85 || -70
 +
|-
 +
| 0 || 0 || 12 || -72 || 72 || -17
 +
|-
 +
| 0 || 0 || 0 || -67 || -26 || -6
 +
|-
 +
| 0 || 0 || 0 || 0 || -13 || 50
 +
|}
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|By-28br11wg|280|center|Hessenberg Matrix}}
 +
 
 +
==See Also==
 +
*[[Manuals/calci/HADAMARD| HADAMARD]]
 +
*[[Manuals/calci/CONFERENCE| CONFERENCE]]
 +
*[[Manuals/calci/CIRCULANT| CIRCULANT]]
 +
*[[Manuals/calci/HANKEL| HANKEL]]
 +
 
 +
==References==
 +
*[http://en.wikipedia.org/wiki/Hessenberg_matrix Hessenberg matrix]

Latest revision as of 01:11, 26 October 2015

MATRIX("HESSENBERG",order)


  • is the order of the Hessenberg matrix.

Description

  • This function gives the matrix with the property of Hessenberg matrix.
  • A Hessenberg matrix is a special kind of square matrix, one that is "almost" triangular.
  • To be exact, an upper Hessenberg matrix has zero entries below the first subdiagonal, and a lower Hessenberg matrix has zero entries above the first superdiagonal.
  • Here MATRIX("hessenberg") displays the hessenberg matrix of order 3.
  • An nxn matrix with for is called a Hessenberg matrix.
  • So the form of a Hessenberg matrix is: \begin{bmatrix}

a_{11} & a_{12} & a_{13} \cdots & a_{1(n-1)}& a_{1n} \\ a_{21} & a_{22} & a_{23} \cdots& a_{2(n-1)}& a_{2n} \\ 0 & a_{32} & a_{33} \cdots& a_{3(n-1)}& a_{3n} \\ 0 & 0 & a_{43} \cdots& a_{4(n-1)}& a_{4n} \\ 0 & 0 & 0 \cdots& a_{5(n-1)}& a_{5n} \\ \vdots & \ddots & \vdots \\ 0 & 0 & 0 & a_{(n-1)(n-2)} & a_{(n-1)(n-1)} & a_{(n-1)n}\\ 0 & 0 & 0 & 0 & a_{n(n-1)} & a_{nn}\\ \end{bmatrix}

  • So the matrix is zero below the first subdiagonal.
  • If the matrix is symmetric or Hermitian, the form is tridiagonal.

Examples

  • 1.MATRIX("hessenberg") =53
  • 2.MATRIX("hessenberg",3)
-10 -50 -92
-32 62 33
0 -99 -81
  • 3.MATRIX("hessenberg",6)
99 88 -73 20 -17 -10
-28 40 -2 15 -48 55
0 -46 56 -76 -85 -70
0 0 12 -72 72 -17
0 0 0 -67 -26 -6
0 0 0 0 -13 50

Related Videos

Hessenberg Matrix

See Also

References