Difference between revisions of "Manuals/calci/TTESTTWOSAMPLESEQUALVARIANCES"

From ZCubes Wiki
Jump to navigation Jump to search
Line 38: Line 38:
 
|}
 
|}
  
#=TTESTTWOSAMPLESEQUALVARIANCES(A1:F1,A2:F2,2,0.5,1)
+
#=TTESTTWOSAMPLESEQUALVARIANCES(A1:F1,A2:F2,2,0.5,0)
 +
{| class="wikitable"
 +
|+t-Test: Two-Sample Assuming Equal Variances
 +
|-
 +
! !! Variable 1 !! Variable 2
 +
|-
 +
! Mean
 +
| 19.333333333333332 || 20.666666666666668
 +
|-
 +
! Variance
 +
| 87.06666666666666 || 109.86666666666667
 +
|-
 +
! Observations
 +
| 6 || 6
 +
|-
 +
! Pooled Variance
 +
| 98.46666666666667
 +
|-
 +
! Hypothesized Mean Difference
 +
| 2
 +
|-
 +
! Degree Of Freedom
 +
| 10
 +
|-
 +
! T- Statistics
 +
| -0.5818281835787091
 +
|-
 +
! P(T<=t) One-tail
 +
| 0.28678199670723614
 +
|-
 +
! T Critical One-Tail
 +
| 0
 +
|-
 +
! P(T<=t) Two-tail
 +
| 0.5735639934144723
 +
|-
 +
! T Critical Two-Tail
 +
| 0.6998120613365443
 +
|}
  
 
==See Also==
 
==See Also==

Revision as of 15:34, 22 December 2016

TTESTTWOSAMPLESEQUALVARIANCES (Array1,Array2,HypothesizedMeanDifference,Alpha,NewTableFlag)


  • and are set of values.
  • is the Hypothesized Mean Difference.
  • is the significance level.
  • is either 0 or 1.

Description

  • This function calculating the two Sample for equal variances determines whether two sample means are equal.
  • We can use this test when both:
  • 1.The two sample sizes are equal;
  • 2.It can be assumed that the two distributions have the same variance.
  • In , and are two arrays of sample values. is the Hypothesized Mean Difference .
  • Suppose HypothesizedMeanDifference=0 which indicates that sample means are hypothesized to be equal.
  • is the significance level which ranges from 0 to 1.
  • is either 0 or 1.
  • "1" is indicating the result will display in new worksheet.Suppose we are omitted the NewTableFlag value it will consider the value as "0".
  • The t statistic of this function calculated by:

where

  • Here and are unbiased estimators of the variances of two samples. is the grand standard deviation data 1 and data2 and n is the data points of two data set.
  • This function will give the result as error when
  1.any one of the argument is non-numeric.
  2.Alpha>1
  3. and  are having different number of data points.

Examples

Spreadsheet
A B C D E F
1 10 15 18 27 12 34
2 17 20 25 39 9 14
  1. =TTESTTWOSAMPLESEQUALVARIANCES(A1:F1,A2:F2,2,0.5,0)
t-Test: Two-Sample Assuming Equal Variances
Variable 1 Variable 2
Mean 19.333333333333332 20.666666666666668
Variance 87.06666666666666 109.86666666666667
Observations 6 6
Pooled Variance 98.46666666666667
Hypothesized Mean Difference 2
Degree Of Freedom 10
T- Statistics -0.5818281835787091
P(T<=t) One-tail 0.28678199670723614
T Critical One-Tail 0
P(T<=t) Two-tail 0.5735639934144723
T Critical Two-Tail 0.6998120613365443

See Also

References