Difference between revisions of "Manuals/calci/ANTISYMMETRIC"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div style="font-size:30px">'''ANTISYMMETRIC'''</div><br/>")
 
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''ANTISYMMETRIC'''</div><br/>
+
<div style="font-size:30px">'''MATRIX("ANTISYMMETRIC",order)'''</div><br/>
 +
*<math> order </math>  is the order of the Anti diagonal matrix.
 +
 
 +
==Description==
 +
*This function gives the matrix of order 3 which is satisfying the anti symmetric properties.
 +
*An antisymmetric matrix is a square matrix that satisfies the identity A=-A^(T)  ,where A^(T) is the matrix transpose.
 +
*For example, A= <math>\begin{bmatrix}
 +
0 & -1 \\
 +
1 & 0 \\
 +
\end{bmatrix}</math>
 +
*So the form of anti symmetric is  <math>\begin{bmatrix}
 +
0 & a12 & a13 \\
 +
-a12 & 0 &  a23 \\
 +
-a13 & -a23 & 0 \\
 +
\end{bmatrix}</math>
 +
*Antisymmetric matrices are commonly called "skew symmetric matrices"  or "antimetric".
 +
*So in CALCI,users can give the syntax as:
 +
*1.MATRIX("anti-symmetric")
 +
*2.MATRIX("antisymmetric")
 +
*2.MATRIX("skewsymmetric")
 +
*3.MATRIX("skew-symmetric")
 +
*Here this is case-insensitive.
 +
 
 +
==Examples==
 +
*MATRIX("antisymmetric",3)
 +
{| class="wikitable"
 +
|-
 +
| 0 || 50 || -87
 +
|-
 +
| -50 || 0 || 12
 +
|-
 +
| 87 || -12 || 0
 +
|}
 +
*MATRIX("anti-symmetric",4)
 +
{| class="wikitable"
 +
|-
 +
| 0 || 31 || -41 || -44
 +
|-
 +
| -31 || 0 || 67 || -88
 +
|-
 +
| 41 || -67 || 0 || 100
 +
|-
 +
| 44 || 88 || -100 || 0
 +
|}
 +
*MATRIX("skewsymmetric",2)
 +
{| class="wikitable"
 +
|-
 +
| 0 || -78
 +
|-
 +
| 78 || 0
 +
|}
 +
*MATRIX("skew-symmetric",5)
 +
{| class="wikitable"
 +
|-
 +
| 0 || 34 || -3 || 79 || -7
 +
|-
 +
| -34 || 0 || 94 || 81 || 93
 +
|-
 +
| 3 || -94 || 0 || 81 || -58
 +
|-
 +
| -79 || -81 || -81 || 0 || -83
 +
|-
 +
| 7 || -93 || 58 || 83 ||0
 +
|}
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|JCT3EaVLUeo|280|center|Symmetric Matrices}}
 +
 
 +
==See Also==
 +
*[[Manuals/calci/ARROWHEAD| ARROWHEAD]]
 +
*[[Manuals/calci/ANTIDIAGONAL| ANTIDIAGONAL]]
 +
*[[Manuals/calci/MATRIXOPERATORS| MATRIXOPERATORS]]
 +
 
 +
==References==
 +
*[http://en.wikipedia.org/wiki/Skew-symmetric_matrix Skew Symmetric]

Latest revision as of 13:45, 30 January 2017

MATRIX("ANTISYMMETRIC",order)


  • is the order of the Anti diagonal matrix.

Description

  • This function gives the matrix of order 3 which is satisfying the anti symmetric properties.
  • An antisymmetric matrix is a square matrix that satisfies the identity A=-A^(T) ,where A^(T) is the matrix transpose.
  • For example, A=
  • So the form of anti symmetric is
  • Antisymmetric matrices are commonly called "skew symmetric matrices" or "antimetric".
  • So in CALCI,users can give the syntax as:
  • 1.MATRIX("anti-symmetric")
  • 2.MATRIX("antisymmetric")
  • 2.MATRIX("skewsymmetric")
  • 3.MATRIX("skew-symmetric")
  • Here this is case-insensitive.

Examples

  • MATRIX("antisymmetric",3)
0 50 -87
-50 0 12
87 -12 0
  • MATRIX("anti-symmetric",4)
0 31 -41 -44
-31 0 67 -88
41 -67 0 100
44 88 -100 0
  • MATRIX("skewsymmetric",2)
0 -78
78 0
  • MATRIX("skew-symmetric",5)
0 34 -3 79 -7
-34 0 94 81 93
3 -94 0 81 -58
-79 -81 -81 0 -83
7 -93 58 83 0

Related Videos

Symmetric Matrices

See Also

References