Difference between revisions of "Manuals/calci/DTAN"
Jump to navigation
Jump to search
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <div style="font-size:30px">'''DTAN( | + | <div style="font-size:30px">'''DTAN(Number)'''</div><br/> |
− | * | + | *'''Number''' is the angle in Degrees. |
− | * | + | **DTAN(),returns the double-precision tangent of given angle. |
− | [[Manuals/calci/TAN| TAN]] can be used if the angle is in Radians. | + | |
+ | [[Manuals/calci/TAN| TAN]] can be used if the angle is in Radians.<br/> | ||
+ | The angle can be a single value or any complex array of values.<br/> | ||
+ | For example DTAN(1..100) can give an array of the results, which is the TAN value for each of the elements in the array. The array could be of any values either '+' or '-' like 1..5@DTAN or (-5)..(-1)@DTAN. | ||
+ | |||
==Description== | ==Description== | ||
− | * | + | *In a right angled triangle, '''TAN = Opposite side / Adjacent side''' or '''SIN / COS'''.<br/> |
− | + | *This function is used to obtain the Tangent value of 'x' in Degrees.<br/> | |
− | * | + | *To obtain the value in Radians multiply with PI()/180 or use Tan function TAN(x) |
− | *To obtain the value in Radians multiply with PI()/180 or use Tan function TAN( | ||
*DTAN returns NaN if 'x' is not real | *DTAN returns NaN if 'x' is not real | ||
− | |||
− | The following example shows how DTAN is applied to an array of numbers containing | + | The following example shows how DTAN is applied to an array of numbers containing angles 1..10. |
− | *Type =1..10@ | + | *Type =1..10@DTAN in Calci |
*Type =1..10@DTAN or 1..10@DTAN in ZOS | *Type =1..10@DTAN or 1..10@DTAN in ZOS | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
− | ! | + | ! Angles !! DTAN |
|- | |- | ||
− | | 1 || 0. | + | | 1 || 0.017455065 |
|- | |- | ||
− | | 2 || | + | | 2 || 0.034920769 |
|- | |- | ||
− | | 3 || | + | | 3 || 0.052407779 |
|- | |- | ||
− | | 4 || 0. | + | | 4 || 0.069926812 |
|- | |- | ||
− | | 5 || | + | | 5 || 0.087488664 |
|- | |- | ||
− | | 6 || | + | | 6 || 0.105104235 |
|- | |- | ||
− | | 7 || | + | | 7 || 0.122784561 |
|- | |- | ||
− | | 8 || | + | | 8 || 0.140540835 |
|- | |- | ||
− | | 9 || | + | | 9 || 0.15838444 |
|- | |- | ||
− | | 10 || | + | | 10 || 0.176326981 |
+ | |||
|} | |} | ||
== Examples == | == Examples == | ||
'''DTAN(x)''' | '''DTAN(x)''' | ||
− | *'''x ''' is the angle in | + | *'''x ''' is the angle in degrees. |
− | * | + | * TAN(-x)=-TAN(x) |
* Result shows TAN(abc)= NAN | * Result shows TAN(abc)= NAN | ||
Line 50: | Line 53: | ||
|- class="even" | |- class="even" | ||
− | |'''DTAN( | + | |'''DTAN(degrees)''' |
|'''Value''' | |'''Value''' | ||
|- class="odd" | |- class="odd" | ||
− | | DTAN ( | + | | DTAN (0) |
− | | 0 | + | | 0 |
|- class="even" | |- class="even" | ||
− | | DTAN ( | + | | DTAN (1) |
− | | | + | | 0.017455065 |
|- class="odd" | |- class="odd" | ||
− | | DTAN (- | + | | DTAN (-45) |
− | | | + | | -1 |
|} | |} | ||
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|Kz6tCMgat94|280|center|Trig Function Values in Degrees}} | ||
==See Also== | ==See Also== | ||
Line 76: | Line 83: | ||
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions] | *[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions] | ||
+ | |||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 15:47, 25 June 2018
DTAN(Number)
- Number is the angle in Degrees.
- DTAN(),returns the double-precision tangent of given angle.
TAN can be used if the angle is in Radians.
The angle can be a single value or any complex array of values.
For example DTAN(1..100) can give an array of the results, which is the TAN value for each of the elements in the array. The array could be of any values either '+' or '-' like 1..5@DTAN or (-5)..(-1)@DTAN.
Description
- In a right angled triangle, TAN = Opposite side / Adjacent side or SIN / COS.
- This function is used to obtain the Tangent value of 'x' in Degrees.
- To obtain the value in Radians multiply with PI()/180 or use Tan function TAN(x)
- DTAN returns NaN if 'x' is not real
The following example shows how DTAN is applied to an array of numbers containing angles 1..10.
- Type =1..10@DTAN in Calci
- Type =1..10@DTAN or 1..10@DTAN in ZOS
Angles | DTAN |
---|---|
1 | 0.017455065 |
2 | 0.034920769 |
3 | 0.052407779 |
4 | 0.069926812 |
5 | 0.087488664 |
6 | 0.105104235 |
7 | 0.122784561 |
8 | 0.140540835 |
9 | 0.15838444 |
10 | 0.176326981 |
Examples
DTAN(x)
- x is the angle in degrees.
- TAN(-x)=-TAN(x)
- Result shows TAN(abc)= NAN
DTAN(degrees) | Value |
DTAN (0) | 0 |
DTAN (1) | 0.017455065 |
DTAN (-45) | -1 |
Related Videos
See Also
References